
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 4415
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

www.manaraa.com

Paul Lukowicz Lothar Thiele
Gerhard Tröster (Eds.)

Architecture of
Computing Systems -
ARCS 2007

20th International Conference
Zurich, Switzerland, March 12-15, 2007
Proceedings

13

www.manaraa.com

Volume Editors

Paul Lukowicz
University of Passau
IT-Center/International House
Innstraße 43, 94032 Passau, Germany
E-mail: paul.lukowicz@uni-passau.de

Lothar Thiele
Swiss Federal Institute of Technology Zurich
Computer Engineering and Networks Laboratory
Gloriastrasse 35, 8092 Zurich, Switzerland
E-mail: thiele@tik.ee.ethz.ch

Gerhard Tröster
Swiss Federal Institute of Technology Zurich
Electronics Laboratory
Gloriastrasse 35, 8092 Zürich. Switzerland
E-mail: troester@ife.ee.ethz.ch

Library of Congress Control Number: 2007922097

CR Subject Classification (1998): C.2, C.5.3, D.4, D.2.11, H.3.5, H.4, H.5.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71267-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71267-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12031580 06/3142 5 4 3 2 1 0

www.manaraa.com

Preface

The ARCS series of conferences has over 30 years of tradition reporting high-
quality results in computer architecture and operating systems research. While
the conference is proud of its long tradition, it is also proud to represent a dy-
namic, evolving community that closely follows new research trends and topics.
Thus, over the last few years, ARCS has evolved towards a strong focus on sys-
tem aspects of pervasive computing and self-organization techniques (organic
and autonomic computing). At the same time it has expanded from its roots as
a German Informatics Society (GI/ITG) conference to an international event.
This is reflected by the composition of the TPC which included over 30 renown
scientist from 10 different countries. The conference attracted 83 submission
from 16 countries across 4 continents. Of those, 20 have been accepted, which
amounts to an acceptance rate below 25%.

The 20th ARCS event was a special anniversary conference. It is only fitting
that it was held at a special place: the ETH Zurich. It combines one of the
leading information technology schools in Europe with a beautiful location.

I would like to express my gratitude to all those who made this year’s con-
ference possible. This includes the General Chairs Lothar Thiele and Gerhard
Tröster from ETH, the Tutorials and Workshops Chair Marco Platzner from
the University of Paderborn, the members of the “Fachausschus ARCS” of the
GI/ITG (the Steering Committee), the members of the Technical Program Com-
mittee, the Reviewers, and most of all to all the authors that submitted their
work to ARCS 2007. I would also like to thank IFIP, ITG/Electrosuisse, VDE
and the ARTIST2 Project for their support of the conference.

January 2007 Paul Lukowicz

www.manaraa.com

Organization

Organizing Committee

Conference Chairs : Lothar Thiele (ETH Zurich, Switzerland)
Gerhard Tröster (ETH Zurich, Switzerland)

Program Chair: Paul Lukowicz (University of Passau, Germany)
Workshops and Tutorials: Marco Platzner (University of Paderborn, Germany)

Program Committee

Nader Bagherzadeh, University of California, Irvine, USA
Michael Beigl, University of Braunschweig, Germany
Michael Berger, Siemens AG, Munich, Germany
Don Chiarulli, University of Pittsburgh, USA
Giovanni Demicheli, EPFL Lausanne, Switzerland
Koen De Bosschere, Ghent University, Belgium
Alois Ferscha, University of Linz, Austria
Mike Hazaas, Lancaster University, UK
Ernst Heinz, UMIT Hall i. Tirol, Austria
Paolo Ienne, EPFL Lausanne, Switzerland
Wolfgang Karl, University of Karlsruhe, Germany
Spyros Lalis, University of Thessaly, Greece
Koen Langendoen, Delft University of Technology, The Netherlands
Tom Martin, Virginia Tech, USA
Hermann de Meer, University of Passau, Germany
Erik Maehle, University of Luebeck, Germany
Peter Marwedel, University of Dortmund, Germany
Christian Mller-Schloer, University of Hanover, Germany
Stephane Vialle, Supelec, France
Joe Paradiso, MIT Media Lab, USA
Daniel Roggen, ETH Zurich, Switzerland
Pascal Sainrat, Université Paul Sabatier, Toulouse, France
Heiko Schuldt, University of Basel, Switzerland
Hartmut Schmeck, University of Karlsruhe, Germany
Karsten Schwan, Georgia Tech, Atlanta, USA
Bernhard Sick, University of Passau, Germany
Juergen Teich, University of Erlangen, Germany
Pedro Trancoso, University of Cyprus, Cyprus
Theo Ungerer, University of Augsburg, Germany
Stamatis Vassiliadis, Delft University of Technology, The Netherlands
Lucian Vintan, Lucian Blaga University of Sibiu, Romania
Klaus Waldschmidt, University of Frankfurt, Germany

www.manaraa.com

VIII Organization

Additional Reviewers

Henoc Agbota
Mohammed Al-Loulah
Muneeb Ali
Ioannis Avramopoulos
Gonzalo Bailador
David Bannach
Juergen Becker
Andrey Belenky
Mladen Berekovic
Uwe Brinkschulte
Rainer Buchty
Georg Carle
Supriyo Chatterjea
Marcelo Cintra
Philippe Clauss
Joshua Edmison
Werner Erhard
Philippe Faes
Diego Federici
Dietmar Fey
Mamoun Filali Amine
Stefan Fischer
Pierfrancesco Foglia
Thomas Fuhrmann
Martin Gaedke
Marco Goenne
Werner Grass
Jan Haase
Erik Hagersten
Jörg Hähner
Gertjan Halkes

Holger Harms
Sabine Hauert
Wim Heirman
Jörg Henkel
Michael Hinchey
Alexander Hofmann
Ulrich Hofmann
Amir Kamalizad
Dimitrios Katsaros
Bernd Klauer
Manfred Kunde
Kai Kunze
Christoph Langguth
Marc Langheinrich
Baochun Li
Lei Liu
Paul Lokuciejewski
Clemens Lombriser
Thanasis Loukopoulos
Jonas Maebe
Rene Mayrhofer
Lotfi Mhamdi
Jörg Mische
Florian Moesch
Thorsten Möller
Katell Morin-Allory
Sanaz Mostaghim
Leyla Nazhandali
Afshin Niktash
Pasquale Pagano
Thomas Papakostas

Hooman Parizi
Tom Parker
Neal Patwari
Andy Pimentel
Thilo Pionteck
Laura Pozzi
Robert Pyka
Markus Ramsauer
Thomas Schwarzfischer
Andr Seznec
Enrique Soriano
Ioannis Sourdis
Michael Springmann
Mathias Stäger
Yannis Stamatiou
Kyriakos Stavrou
Walter Stiehl
Mototaka Suzuki
Joseph Sventek
Jie Tao
Karl-Heinz Temme
Sascha Uhrig
Miljan Vuletic
Jamie Ward
Ralph Welge
Lars Wolf
Bernd Wolfinger
Markus Wulff
Olivier Zendra
Peter Zipf

www.manaraa.com

Table of Contents

ARCS 2007

A Reconfigurable Processor for Forward Error Correction 1
Afshin Niktash, Hooman T. Parizi, and Nader Bagherzadeh

FPGA-Accelerated Deletion-Tolerant Coding for Reliable Distributed
Storage . 14

Peter Sobe and Volker Hampel

LIRAC: Using Live Range Information to Optimize Memory Access 28
Peng Li, Dongsheng Wang, Haixia Wang, Meijuan Lu, and
Weimin Zheng

Optimized Register Renaming Scheme for Stack-Based x86
Operations . 43

Xuehai Qian, He Huang, Zhenzhong Duan, Junchao Zhang,
Nan Yuan, Yongbin Zhou, Hao Zhang, Huimin Cui, and Dongrui Fan

A Customized Cross-Bar for Data-Shuffling in Domain-Specific SIMD
Processors . 57

Praveen Raghavan, Satyakiran Munaga, Estela Rey Ramos,
Andy Lambrechts, Murali Jayapala, Francky Catthoor, and
Diederik Verkest

Customized Placement for High Performance Embedded Processor
Caches . 69

Subramanian Ramaswamy and Sudhakar Yalamanchili

A Multiprocessor Cache for Massively Parallel SoC Architectures 83
Jörg-Christian Niemann, Christian Liß, Mario Porrmann, and
Ulrich Rückert

Improving Resource Discovery in the Arigatoni Overlay Network 98
Raphaël Chand, Luigi Liquori, and Michel Cosnard

An Effective Multi-hop Broadcast in Vehicular Ad-Hoc Network 112
Tae-Hwan Kim, Won-Kee Hong, and Hie-Cheol Kim

Functional Knowledge Exchange Within an Intelligent
Distributed System . 126

Oliver Buchtala and Bernhard Sick

Architecture for Collaborative Business Items . 142
Till Riedel, Christian Decker, Phillip Scholl, Albert Krohn, and
Michael Beigl

www.manaraa.com

X Table of Contents

Autonomic Management Architecture for Flexible Grid Services
Deployment Based on Policies . 157

Edgar Magaña, Laurent Lefevre, and Joan Serrat

Variations and Evaluations of an Adaptive Accrual Failure Detector to
Enable Self-healing Properties in Distributed Systems 171

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and
Theo Ungerer

Self-organizing Software Components in Distributed Systems 185
Ichiro Satoh

Toward Self-adaptive Embedded Systems: Multi-objective Hardware
Evolution . 199

Paul Kaufmann and Marco Platzner

Measurement and Control of Self-organised Behaviour in
Robot Swarms . 209

Moez Mnif, Urban Richter, Jürgen Branke, Hartmut Schmeck, and
Christian Müller-Schloer

Autonomous Learning of Load and Traffic Patterns to Improve Cluster
Utilization . 224

Andrew Sohn, Hukeun Kwak, and Kyusik Chung

Parametric Architecture for Function Calculation Improvement 240
Maŕıa Teresa Signes Pont, Juan Manuel Garćıa Chamizo,
Higinio Mora Mora, and Gregorio de Miguel Casado

Design Space Exploration of Media Processors: A Generic VLIW
Architecture and a Parameterized Scheduler . 254

Guillermo Payá-Vayá, Javier Mart́ın-Langerwerf,
Piriya Taptimthong, and Peter Pirsch

Modeling of Interconnection Networks in Massively Parallel Processor
Architectures . 268

Alexey Kupriyanov, Frank Hannig, Dmitrij Kissler, Jürgen Teich,
Julien Lallet, Olivier Sentieys, and Sébastien Pillement

Invited Talk: Expanding Software Product Families: From Integration
to Composition . 283

Jan Bosch

Author Index . 297

www.manaraa.com

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 1 – 13, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Reconfigurable Processor for Forward Error
Correction

Afshin Niktash, Hooman T. Parizi, and Nader Bagherzadeh

536 Engineering Tower, Henry Samueli School of Engineering,
University of California, Irvine, CA 92697-2625, USA
{aniktash,hparizi,nader}@ece.uci.edu

Abstract. In this paper, we introduced a reconfigurable processor optimized for
implementation of Forward Error Correction (FEC) algorithms and provided the
implementation results of the Viterbi and Turbo decoding algorithms. In this
architecture, an array of processing elements is employed to perform the
required operations in parallel. Each processing element encapsulates multiple
functional units which are highly optimized for FEC algorithms. A data buffer
coupled with high bandwidth interconnection network facilitates pumping the
data to the array and collecting the results. A processing element controller
orchestrates the operation and the data movement. Different FEC algorithms
like Viterbi, Turbo, Reed-Solomon and LDPC are widely used in digital
communication and could be implemented on this architecture. Unlike
traditional approach to programmable FEC architectures, this architecture is
instruction-level programmable which results the ultimate flexibility and
programmability.

Keywords: Reconfigurable Processor, Processing Element, Forward Error
Correction, Viterbi, Turbo.

1 Introduction

Reconfigurable architectures customize the same piece of silicon for multiple
applications. While general purpose processors could not meet the processing
requirements of many new applications, traditional custom ASIC dominates the
design space. In wireless communication, a DSP processor is usually responsible for
low data rate signal processing and is coupled with customized silicon to perform the
medium and high data rate processing. The main drawback of a custom design is its
long and costly design cycle which requires high initial investment and results in long
time-to-market. Furthermore, lack of flexibility and programmability of traditional
solutions causes frequent design changes and tape-outs for emerging and developing
standards. Reconfigurable architectures on the other hand are very flexibly and
programmable and could significantly shorten the design cycle of new products while
even extending the life cycle of existing products. Tracking new standards is
simplified to software upgrades which could be performed on-the-fly.

One of the challenging applications of a reconfigurable architecture is channel
coding. Almost any digital communication system benefits from at least one form of

www.manaraa.com

2 A. Niktash, H.T. Parizi, and N. Bagherzadeh

error correction coding [1]. There are four main algorithms widely used in wireless
and wired communications: Viterbi, Turbo, Reed-Solomon and LDPC. However,
multiple variations of each of these algorithms are employed in standards. More
specifically, every standard uses a different configuration of an algorithm which
makes that unique to that standard. For example, , the Turbo code used in W-CDMA
standard has a different polynomial, block size, rate and termination scheme from that
used in WiMAX. Viterbi coding employed in W-LAN, W-CDMA and WiMAX are
not the same. This translates to having a plurality of coding accelerators for different
coding algorithms and configurations which is very common in industry. In
conventional approach, a separate coprocessor is employed for every FEC algorithm.
Nevertheless, even one coprocessor is not programmable enough to cover all existing
configurations of an FEC algorithm for multiple standards.

In this paper, we introduce RECFEC, a REConfigurable processor optimized for
Forward Error Correction algorithms. RECFEC combines the programmability of a
DSP processor with performance of a dedicated hardware and is architected to enable
effective software implementation of FEC algorithms. The organization of this paper
is as follows. Section 2 reviews the related works. Section 3 describes the RECFEC
architecture and programming model. Section 4 presents two examples of algorithm
implementation, Viterbi and Turbo coding and Section 5 concludes the paper.

2 Related Works

There are considerable research efforts to develop prototypes of reconfigurable
architectures for channel coding. In this section, we present the features of those
architectures.

A reconfigurable signal processor is introduced in [2] using an FPGA based
reconfigurable processing board to implement a programmable Turbo decoder.

Viturbo[3] is among the first contributions trying to integrate Viterbi and Turbo
decoders into a single architecture. Viturbo is a runtime reconfigurable architecture
designed and implemented on an FPGA. The architecture can be reconfigured to
decode a range of convolutionally coded data and can also be reconfigured to decode
Turbo coded data. SOVA is the algorithm implemented for Turbo decoding. The
target application is W-LAN, 3GPP and GSM.

A dual mode Viterbi/Turbo decoder is introduced in [4]. The component decoder
in this architecture has two modes and some of the modules are shared. In Viterbi
mode, and the Log Likelihood Ratio (LLR) processors are turned off. Input symbols
are sent from Branch Metrics Unit (BMU) processor to Add Compare Select Unit
(ACSU) processor and decoded bits are sent out after tracing back. When in Turbo
mode, the decoder works as a Maximum A posteriori Probability (MAP) decoder and
only the Trace Back Unit (TBU) is turned off.

A Turbo decoder on a dynamically reconfigurable architecture is introduced in [5].
The decoder is optimized for FPGA. The key power-saving technique in this design is
the use of decoder run-time dynamic reconfiguration in response to variations in the
channel conditions. If less favorable channel conditions are detected, a more
powerful, less power-efficient decoder is swapped into the FPGA hardware to
maintain a fixed bit error rate.

www.manaraa.com

 A Reconfigurable Processor for Forward Error Correction 3

A custom architecture for FEC coding of 3G is introduced in [6]. It is based on a
unified Viterbi/Turbo processing architecture and exploits the common trellis
processing operations of two decoding algorithms providing 3GPP compliant
decoding to the base station.

Several custom implementation of single mode Viterbi or Turbo decoders have
been published in the past (e.g. [7],[8]).

Following key features are not effectively supported by above mentioned and
similar related contributions and are in fact the design criteria of RECFEC:

• Programmability: Conventional designs are programmable only to the extent
of few parameters needed to support a very small set of wireless standards.
An example is using a limited number of polynomials for constituent
encoders or supporting a few different sizes for data blocks within a Viterbi
decoder.

• Flexibility: Only one or two FEC coding algorithms (e.g. Viterbi/Turbo or
LDPC/Turbo) are integrated in related works.

• Scalability: The conventional implementations typically require major
hardware modification to accommodate higher data rates or improved
performance.

• Choice of algorithm: For every coding scheme, only one algorithm is selected
and implemented. For example, SOVA algorithm in [3] or MAP algorithm in
[4] is implemented for Turbo decoding.

• Precision: Data paths are fixed and tailored to the required precision.
Modifying the data paths to improve the precision results in significant
design changes. For example, 4-bit soft values are used for decoder inputs of
Viterbi decoder.

• Performance: Modifying an algorithm to improve the performance or using a
set of different algorithms depending on the channel quality, data rate, power
consumption, etc is not allowed.

• Multiple standards and Emerging algorithms: The conventional approach
limits us to a few standards. For a multi-standard platform, none of those
designs could cover multiple wireless air interfaces or emerging algorithms
without major hardware modifications.

• Upgradeability: Being able to upgrade a coding engine via software and
even on-the-fly is an appealing feature that can not be achieved in related
works.

Having in mind the aforementioned features of an ideal architecture, RECFEC is
built on a reconfigurable processor design methodology to make it a multi-standard
instruction-level programmable FEC engine.

3 RECFEC Architecture

RECFEC architecture is comprised of a parallel array of Processing Elements (PE)
controlled by a controller. Fig. 1 demonstrates the architecture of RECFEC. The PE
Pool is a two dimensional array of Processing Elements performing parallel

www.manaraa.com

4 A. Niktash, H.T. Parizi, and N. Bagherzadeh

DMA

Configuration Buffer

Processing Element Controller

PE Pool

Data Buffer

Fig. 1. RECFEC architecture

execution of instructions, which are called Configurations. Data and Configuration
information are stored in the Data Buffer (DB) and the Configuration Buffer (CB).

During the execution, Configuration Words which accommodate the configuration
information of PEs are broadcast from the CB to the PE Pool and are stored in
Configuration Registers. DB is embedded data memory that interfaces with external
memory pumps data to the PE Pool. The high throughput data network facilitates the
supply of data to and collection of the results from the PE Pool. Reconfiguration of
the network connecting the DB to the PE Pool facilitates the support of different data
movement patterns. All data transfers between the DB or the CB and the external
memory are handled by the DMA Controller. The PE Controller is a general purpose
32-bit RISC processor which controls the sequence of operations. In following
sections, components of this architecture are elaborated upon.

3.1 Processing Elements Pool

The PE Pool is an array of reconfigurable processing elements. Considering the
implementation of FEC algorithms, PE Pool is organized as an 8x8 array of PEs. The
PE Pool follows the SIMD model of computation. All PEs in the same row/column
share the same Configuration Word. However, each PE operates on different data.
Sharing the configuration across a row/column is useful for data-parallel FEC
algorithms. The PE Pool has a mesh interconnection network, designed to enable fast
data exchange between PEs. Each PE encapsulates four 8-bit functional units, as
shown in Fig. 2:

• ALU: The Arithmetic Logic Unit (ALU) is designed to implement basic logic
and arithmetic functions. The functionality of the ALU is configured through
control bits. These control signals are generated by the PE decoder based on
the information in the Configuration Register

• Add, Compare and Select (ACS) unit: This unit performs ACS, Max and Max*
operations required in Viterbi and Turbo coding. In the Viterbi algorithm,
branch metrics are updated using following equation:

PMi’,t+1= Min(PMi,t + BMii’, PMj,t+BMji’) (1)

www.manaraa.com

 A Reconfigurable Processor for Forward Error Correction 5

where PM and BM represent the path metrics and branch metrics of a trellis
butterfly as shown in Fig. 3. This operation is performed in a single cycle
using the dedicated ACS unit shown in Fig. 4. The unit is also capable of
calculating Max and Max* operations which are frequently used in Turbo
coding:

Max*(x,y)= Max(x,y)+log(1+e-|y-x|)=Max(x,y)+fc(|y-x|) (2)

where fc(.) is the correction factor that could be implemented using the
integrated lookup table in ACS unit.

• GF Accelerator: The Galois Field accelerator is a dedicated engine that
performs modulo and modulo multiply operations used in Reed-Solomon
decoding [9]. Modulo add instruction is implemented using the XOR
integrated in ALU.

• Lookup Table: It is a 16-byte local memory in PEs used for lookup table and
temporary storage.

MUXA

DB
Row
PEs

Col
PEs

Reg
File Constant

MUXB

DB
Row
PEs

Col
PEs

Reg
File Constant

Local Mux

ALU ACS GF
Accelerator

Lookup
table

Control
Unit

Config
Reg

Register File
R0-R15

Out Mux

Adder

Flag Reg

Constant

R Mux

MUXA

DB
Row
PEs

Col
PEs

Reg
File Constant

MUXB

DB
Row
PEs

Col
PEs

Reg
File Constant

Local Mux

ALU ACS GF
Accelerator

Lookup
table

Control
Unit

Config
Reg

Register File
R0-R15

Out Mux

Adder

Flag Reg

Constant

R MuxR Mux

Fig. 2. Processing element architecture

state i

state j

state I’

state j’

state i

state j

state I’

state j’

Fig. 3. Trellis butterfly

www.manaraa.com

6 A. Niktash, H.T. Parizi, and N. Bagherzadeh

+/-

-

M
ux

Path Metrics0

Branch Metrics

+/-Path Metrics1

LUT

+

Difference

Path Metrics

Survivor path

survivor path reg

+/-+/-

-

M
ux

Path Metrics0

Branch Metrics

+/-+/-Path Metrics1

LUT

+

Difference

Path Metrics

Survivor path

survivor path reg

Fig. 4. ACS Unit

3.2 Data Buffer

The Data Buffer (DB) is an important component of RECFEC which is analogous to a
data cache. It makes memory accesses transparent to the PE Pool by overlapping of
computation with data loading and storage. It is designed as a dual port memory
which facilitates the simultaneous access by two different resources, e.g. the PE
Controller, the PE Pool and the DMA.

The Data Buffer consists of 64 memory banks where each bank is associated with
one PE in the PE Pool and feeds it with one byte per clock cycle. A DB bank is a set
of memory segments. Normally, during each access 64 banks are activated which
provide 64×8 bits of data for PE Pool with the memory organized into multiple 512-
bit lines. The DB supports 16, 32 and 64-bit accesses as well. Fig. 5 illustrates the
Data Buffer. In order to enable a variety of permutations a selection logic network is
integrated into the DB. The network pattern is determined by providing the right
configuration for the Configuration Table which in turn sends appropriate control
signals to the selection logic network as shown in Fig. 6. Eight selection logic
networks are integrated to address 8 rows. Every selection logic network provides the
data for 8 PEs. By employing two levels of multiplexers every PE is able to access
any bank in the DB. This feature facilitates random permutation, interleaving and data
shuffling. Consequently, the design of PE Pool interconnection network is relaxed and
complicated data movement is handled by selection logic in the DB.

3.3 Configuration Buffer

The Configuration Buffer (CB) stores the configuration program of the PE Pool. The
Configuration Program is the list of instructions (Configuration Words) of every PE
including the operation and its sources and destination. Configuration Words are 32
bits each. In every cycle, Configuration Words of PEs are broadcast to the PE Pool
and stored in the Configuration Registers of the PEs. Broadcast patterns can be
horizontal or vertical. In horizontal/vertical mode, all PEs in the same row/column

www.manaraa.com

 A Reconfigurable Processor for Forward Error Correction 7

Fig. 5. Data Buffer organization

shares the same Configuration Word and perform the same operations on different
input data (SIMD). Furthermore, Configuration Words can initially be stored in the
Configuration Registers of the PEs. Later, the PEs can execute the stored
Configuration Words repeatedly (MIMD).

3.4 PE Controller

The PE Controller is a 32-bit MIPS-like RISC processor with a four stage pipeline
which orchestrates the operation of the PE Pool. It includes sixteen 32-bit registers
and three functional units, a 32-bit ALU, a 32-bit shift unit and a memory unit as
well as a 4-state pipeline. The instruction set of this RISC processor is augmented
with special instructions to control the PE Pool. The RISC processor works at
250MHz.

3.5 DMA Controller

The DMA controller is programmed to transfer data and Configuration Words to the
DB and the CB. The PE Controller commands the DMA controller to bring the

www.manaraa.com

8 A. Niktash, H.T. Parizi, and N. Bagherzadeh

Fig. 6. Row/column selection logic in Data Buffer

Configuration Words to Configuration Memory. Once the Configuration Words are in
place, they can be broadcast to the PE Pool. It also instructs the DMA to bring the
raw data for decoding from external memory to the DB. Once the decoding is done on
a block of data, the DMA sends it out to external memory.

3.6 Interconnection Network

A mesh design is chosen for the interconnection network. Every PE is connected to 4
neighboring PEs: top, bottom, right and left. Therefore PEs can share their internal
registers with adjacent ones. On the other hand, data communication between non-
adjacent PEs is handled via the DB. In many algorithms, high speed data movement
happens between adjacent PEs. For example, ACS inputs in Viterbi or Turbo will be
originated from neighboring cells which will be performed in single cycle. In this case
mesh network could effectively support this type of traffic. For more complicated
patterns, data is written to the DB and reordered while reading back to the PE Pool.
This will require an extra cycle.

3.7 Programming Model of RECFEC

In RECFEC, FEC algorithms can be implemented in software. An algorithm is
partitioned into two segments: control segment and processing segment. In FEC
algorithms, the processing segment is usually very parallel and is mapped to the PE
Pool. There are some control and scheduling parts in algorithms that are handled by
the PE Controller. A RECFEC program consists of two sections: PE Controller Code
(PEC Code) is the main control and scheduling program that orchestrates the
operation of the PE Pool, the Data Buffer, the DMA and the Configuration Buffer.
PE Pool Code (PEP Code) is the parallel Configuration Words for PEs. Configuration
Words are broadcast to PE Pool using special instructions in PEC Code pointing to
corresponding Configuration Words in PEP Code. The programming model of
RECFEC is illustrated in Fig. 7.

www.manaraa.com

 A Reconfigurable Processor for Forward Error Correction 9

DMA
Configuration Buffer

PE Controller

PE Pool
Data Buffer

add r1,r2,r3
addi r5,r5,1
ldw r2,0,1,0
hbcast 0,1,0,0
vbcast 1,1,0,0
brle r5,16,-8

Set 0:
KEEP I I;
ACS R0 R1 R2 > 0 R0;
ACS R0 R1(1) R2 > 0 R0;
ACS R0 R1(1) R2 > 0 R0;
KEEP I I;
ACS R0 R1(7) R2 > 0 R0;
ACS R0 R1(7) R2 > 0 R0;
ACS R0 R1 R2 > 0 R0;

Set 1:
…

PEC Code

PEP Code

DMA
Configuration Buffer

PE Controller

PE Pool
Data Buffer

DMA
Configuration Buffer

PE Controller

PE Pool
Data Buffer

DMA
Configuration Buffer

PE Controller

PE Pool
Data Buffer

PE Controller

PE Pool
Data Buffer

add r1,r2,r3
addi r5,r5,1
ldw r2,0,1,0
hbcast 0,1,0,0
vbcast 1,1,0,0
brle r5,16,-8

Set 0:
KEEP I I;
ACS R0 R1 R2 > 0 R0;
ACS R0 R1(1) R2 > 0 R0;
ACS R0 R1(1) R2 > 0 R0;
KEEP I I;
ACS R0 R1(7) R2 > 0 R0;
ACS R0 R1(7) R2 > 0 R0;
ACS R0 R1 R2 > 0 R0;

Set 1:
…

add r1,r2,r3
addi r5,r5,1
ldw r2,0,1,0
hbcast 0,1,0,0
vbcast 1,1,0,0
brle r5,16,-8

add r1,r2,r3
addi r5,r5,1
ldw r2,0,1,0
hbcast 0,1,0,0
vbcast 1,1,0,0
brle r5,16,-8

Set 0:
KEEP I I;
ACS R0 R1 R2 > 0 R0;
ACS R0 R1(1) R2 > 0 R0;
ACS R0 R1(1) R2 > 0 R0;
KEEP I I;
ACS R0 R1(7) R2 > 0 R0;
ACS R0 R1(7) R2 > 0 R0;
ACS R0 R1 R2 > 0 R0;

Set 1:
…

Set 0:
KEEP I I;
ACS R0 R1 R2 > 0 R0;
ACS R0 R1(1) R2 > 0 R0;
ACS R0 R1(1) R2 > 0 R0;
KEEP I I;
ACS R0 R1(7) R2 > 0 R0;
ACS R0 R1(7) R2 > 0 R0;
ACS R0 R1 R2 > 0 R0;

Set 1:
…

PEC Code

PEP Code

Fig. 7. Programming model

4 Implementation of FEC Algorithms

In this section we present an example of implementation of the Viterbi and Turbo
algorithms on RECFEC.

4.1 The Viterbi Algorithm

The Viterbi decoder [10],[11] is employed in many different wired and wireless
applications ranging from disk drives to W-LAN, W-CDMA, WiMAX and DVB-H.

In order to utilize the maximum parallelism of the Viterbi algorithm, an efficient
mapping approach is of great importance. A systolic implementation on a
reconfigurable SIMD architecture is shown in [12]. However due to the
interconnection network of the PE Pool and between the PE Pool and the DB, a
parallel implementation has a better performance on RECFEC. The Viterbi decoder
used in W-LAN has the constraint length K=7 which corresponds with 64 trellis
states. By assigning one state to every PE, 64 parallel trellis states are mapped to 64
PEs. Following steps summarize the algorithm:

• Branch metrics calculation: Branch metrics are calculated in parallel in all
64 PEs. The 4-bit soft value symbols are stored in the DB. 128 symbols are
broadcast to the PE Pool. Every PE reads two symbols and calculates
appropriate branch metrics. Four branch metrics are required per trellis stage.
Two of them are calculated. By changing their signs, other two branch
metrics are generated.

• Path metrics calculation: ACS is the main instruction in this step. 64 PEs
perform 64 parallel ACS operations in every cycle. Path metrics are updated
and then stored back to the DB.

• Survivor paths storage: Survivor paths are represented by single bit flag of
ACS instruction and stored in the DB to be used for Trace Back.

• Trace back: Due to the sequential nature of trace back, it is performed on the
PE Controller. The PE Pool is disabled in this step.

Fig. 8 shows the processing schedule of the Viterbi decoder and the mapping of
trellis diagram to the PE Pool as performed on RECFEC. This mapping is applicable
for the Viterbi decoder used in W-LAN which has 64 states.

www.manaraa.com

10 A. Niktash, H.T. Parizi, and N. Bagherzadeh

In W-CDMA, the coder has constraint length 9 which results 256 trellis states. One
efficient mapping is to allocate 4 adjacent states to one PE. Therefore every PE
performs 4 back-to-back ACS operations. This mapping requires 4 internal registers
to store the path metrics. Another mapping scenario is to use half of the PE Pool for
the trellis and consequently ACS operations of 8 states are performed sequentially in
every PE. The other half of the PE Pool can be used then to perform similar
operations, but on a different Viterbi block. As a result two encoded blocks will be
decoded concurrently. The problem with this approach is the latency and the
availability of parallel blocks. We summarized the performance of the single block
implementation of Viterbi in Table 1. The maximum throughput in this approach is
good enough for W-LAN application. For W-CDMA, the maximum throughput is
much more than mandated date rate. In W-CDMA standard, Viterbi algorithm is only
used for low data rate voice and not for high speed data (HSDPA).

PE 0

PE 1

PE 62

1/00

0/00

1/11

0/11

S0

S1

S0

S32

1/00

0/00

1/11

0/11

S0

S1

S0

S32PE 63

PE 0

PE 1

PE 62

1/00

0/00

1/11

0/11

S0

S1

S0

S32

1/00

0/00

1/11

0/11

S0

S1

S0

S32PE 63

1/00

0/00

1/11

0/11

S0

S1

S0

S32
1/00

0/00

1/11

0/11

S0

S1

S0

S32

1/00

0/00

1/11

0/11

S0

S1

S0

S32
1/00

0/00

1/11

0/11

S0

S1

S0

S32PE 63

BMC

PMC

SPS

TB

BMC

PMC

SPS

TB

(a) (b)

Fig. 8. a. Processing schedule of the Viterbi algorithm, b. Trellis butterflies mapped to PEs

Table 1. Performance of the Viterbi decoder implementation

K R
Brach Metrics

Calculation
(cc/bit)

Path Metrics
Calculation

(cc/bit)

Survivor
Path Storage

(cc/bit)

Trace
Back

(cc/bit)

Total
(cc/bit)

Mbps

7 1/2 0.03 3 1.06 0.42 4.51 55.43
7 1/3 0.05 3 1.06 0.42 4.53 55.24
9 1/2 0.03 12 4.25 0.63 16.91 14.79
9 1/3 0.05 12 4.25 0.63 16.92 14.77

4.2 Turbo Algorithm

By using iterative techniques, Turbo decoders [13] provide large coding gains and are
widely used in digital communication standards like W-CDMA, HSDPA, WiMAX as
well as satellite and deep-space communications.

www.manaraa.com

 A Reconfigurable Processor for Forward Error Correction 11

An iteration of Turbo decoder consists of two Soft Input Soft Output (SISO)
decoders corresponding to the encoder network which provide a measure of reliability
of the decoded bits. There are two types of soft decision decoding algorithms which
are typically used, the first being a modified Viterbi algorithm which produces soft
outputs and hence is called a soft output Viterbi algorithm (SOVA) [14]. A second
algorithm is the maximum a posteriori (MAP) algorithm [15, 16] which results a
better performance especially in low SNR conditions with the penalty of higher
computational complexity. Log-MAP which simplifies the MAP algorithm
computation by taking that to log domain and its approximation, MAX-Log-MAP are
typically used in hardware implementation [17, 18].

RECFEC supports the implementation of either of these algorithms in software. As
shown in Fig. 3, a powerful ACS unit is embedded in PEs which can perform MAX
or MAX* operations. It can also generate the difference of path metrics to be used in
soft Viterbi implementation.

The Turbo decoder in W-CDMA has 8 states. Two rows of the PE Pool are
effectively utilized to implement a Turbo decoder. A MAX-LOG-MAP implementation
requires the mapping of four major functions of a SISO decoder:

• Gamma calculation: It is similar to branch metrics calculation in the Viterbi
algorithm. 4 γ values are required for every trellis stage: γ00, γ01, γ10, γ11. Two
values are calculated and the other two are derived by changing the sign of the
first two values. 8 PEs in the first row and the second row calculate γ00 and γ01
of 8 trellis stages respectively in 6 cycles. The state assignment to the PEs is
shown in Fig. 9.

• Alpha calculation: Using the ACS accelerator, MAX* operation which is the
main operation of α and β calculations is performed effectively on PEs. 8 PEs
on the first row is allocated to handle α calculation of 8 states of a trellis stage
in 4 cycles.

• Beta calculation: It is similar to alpha calculation and is mapped to the second
row of PEs and is performed concurrently with α calculation.

gamma

alpha

beta

LLR

Trellis stage: j j+1 j+2 j+3 j+4 j+5 j+6 j+7

Trellis stage j

γ01 γ01 γ01 γ01 γ01 γ01 γ01 γ01

γ00 γ00 γ00 γ00 γ00 γ00 γ00 γ00

2x8 PEs

β0 β1 β2 β3 β4 β5 β6 β7

α0 α1 α2 α3 α4 α5 α6 α7

2x8 PEs

LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 LLR7

LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 LLR7

Trellis
stage j

stage j+1

2x8 PEs

gamma

alpha

beta

LLR

gamma

alpha

beta

LLR

Trellis stage: j j+1 j+2 j+3 j+4 j+5 j+6 j+7

Trellis stage j

γ01 γ01 γ01 γ01 γ01 γ01 γ01 γ01

γ00 γ00 γ00 γ00 γ00 γ00 γ00 γ00

2x8 PEs

γ01 γ01 γ01 γ01 γ01 γ01 γ01 γ01

γ00 γ00 γ00 γ00 γ00 γ00 γ00 γ00

2x8 PEs

β0 β1 β2 β3 β4 β5 β6 β7

α0 α1 α2 α3 α4 α5 α6 α7

2x8 PEs

β0 β1 β2 β3 β4 β5 β6 β7

α0 α1 α2 α3 α4 α5 α6 α7

2x8 PEs

LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 LLR7

LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 LLR7

Trellis
stage j

stage j+1

2x8 PEs

LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 LLR7

LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 LLR7

Trellis
stage j

stage j+1

2x8 PEs

Fig. 9. Mapping of a Turbo decoder on PEs

www.manaraa.com

12 A. Niktash, H.T. Parizi, and N. Bagherzadeh

• Log Likelihood Ratio (LLR) calculation: This step requires reading of α, β and γ of
all states and computation of log likelihood which is add, subtract and comparison.
Once LLR values of all states are compared, the maximum is selected. Two
rows perform the LLR computation of two separate stages in 9 cycles.

Fig. 9 shows the mapping of α, β and γ calculations. Interleaving function is
performed by programming the customized pattern to the Configuration Table of the
DB. Hard decision bits are generated after the final iteration on two rows.

Multiple levels of parallelism in a Turbo decoder can be address by this mapping
using the PE Pool: SISO level (multiple blocks in two concurrent SISO decoders),
Decoder level (multiple SISO decoders) and System level (multiple decoders to
process parallel FEC blocks).

Table 2 captures the performance of a Turbo decoder used for W-CDMA on a
3856- bit block using MAX-LOG-MAP algorithm.

Table 2. Performance of the Turbo decoder implementation

 SISO Decoder (cc/dec/bit)

K R γ α β LLR Int/Deint Hard Decision
(cc/bit)

Total
(cc/bit/iter)

Mbps
(per iter)

4 1/3 0.75 2 2 4.50 0.50 0.38 19.58 51.09

5 Conclusion

In this paper, a novel reconfigurable processor is introduced that is optimized for
forward error correction. The architecture is parallel and flexible and compared to
conventional implementation of FEC decoders, it is instruction-level programmable
and can accommodate multiple implementations of FEC algorithms. The architecture
can efficiently host evolving algorithms or multiple algorithms for the same coding
scheme and enables adaptive choice of algorithms in different situations. A mapping
scenario of Viterbi and Turbo coding is presented as a case study and performance
metrics are presented.

References

1. A.J Viterbi, “Wireless digital communication: a view based on three lessons learned,”
IEEE Com. magazine, Vol. 29, pp 33-36, Sep. 1991.

2. S. Halter, M.Oberg, P.M. Chau, P.H.Siegel,“Reconfigurable signal processor for channel
coding and decoding in low SNR wireless communications,” IEEE workshop on signal
processing systems, pp. 260-274, 1998.

3. J.R. Cavallaro, M. Vaya, “VITURBO: a reconfigurable architecture for Viterbi and turbo
decoding,” in proceedings of ICASSP '03, Vol. 2, pp. 497-500, 2003

4. K. Huang, F.M. Li, P.L. Shen, A.Y. Wu, “VLSI design of dual mode Viterbi/Turbo
decoder for 3GPP,” in proceedings of ICAS '04, Vol. 2, pp. 773-776, 2004.

5. J. Liang, R. Tessier, D. Goeckel, “A dynamically-reconfigurable, power-efficient Turbo
decoder,” in proceedings of 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 91-100, 2004.

www.manaraa.com

 A Reconfigurable Processor for Forward Error Correction 13

6. C. Thomas, M.A. Bickerstaff, L.M. Davis, T. Prokop, B. Widdup, G. Zhou, D. Garrett, C.
Nicol, “Integrated circuits for channel coding in 3G cellular mobile wireless systems,”
IEEE Com. Magazine, Vol. 41, pp. 150-159, Aug. 2003.

7. J. Ertel, J. Vogt, A. Finger, “A high throughput Turbo Decoder for an OFDM-based
WLAN demonstrator,” in proceedings of 5th International ITG Conference on Source and
Channel Coding (SCC), Jan. 2004.

8. A.J. Viterbi, “An intuitive justification and a simplified implementation of the map
decoder for convolutional codes,” IEEE Journal on Selected Areas in Communications,
Vol. 16, pp. 260-264, Feb. 1998.

9. J. H. Lee, J. Lee, M. H. Sunwoo, “Design of application-specific instructions and hardware
accelerator for Reed-Solomon codecs,” EURASIP Journal on Applied Signal Processing ,
Vol 2003 , pp 1346-1354, 2003.

10. A. Viterbi, “Error bounds for convolutional coding and an asymptotically optimum
decoding algorithm,” IEEE Trans. Info. Theory, Vol. IT-13, pp. 260-269, Apr. 1967.

11. G.D. Forney, “The Viterbi algorithm,” in proceedings of the IEEE, Vol. 61, pp.268-278,
Mar. 1973.

12. A. Niktash, H. Parizi, N. Bagherzadeh, “A Multi-standard Viterbi Decoder for mobile
applications using a reconfigurable architecture,” in proceedings of VTC, Fall 2006.

13. C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-correcting coding
and decoding: Turbo codes,” in proceedings of ICC '93, pp. 1064-1070, 1993.

14. J. Hagenauer, P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its
applications,” in proceedings of GLOBECOM '89, pp. 1680-1686, 1989.

15. L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans.Info. Theory, Vol. 20, pp. 284-287, Mar. 1974.

16. S. Pietrobon, S. A. Barbulescu, “A simplification of the modified Bahl decoding
Algorithm for systematic convolutional codes,” Int. Symp. Info. Theory and its
Applications, pp. 1073–1077, Nov. 1994.

17. J. A. Erfanian, S. Pasupathy, G. Gulak, “Reduced complexity symbol detectors with
parallel structures for ISI channels,” IEEE Trans. on Com., Vol. 42, pp. 1661-1671, 1994.

18. W. Koch, A. Baier, “Optimum and sub-optimum detection of coded data disturbed by
time-varying inter-symbol interference,” in proceedings of GLOBECOM '90, pp. 1679-
1684, Dec. 1990.

www.manaraa.com

FPGA-Accelerated Deletion-Tolerant Coding for

Reliable Distributed Storage

Peter Sobe and Volker Hampel

University of Luebeck
Institute of Computer Engineering

{sobe, hampel}@iti.uni-luebeck.de

Abstract. Distributed storage systems often have to guarantee data
availability despite of failures or temporal downtimes of storage nodes.
For this purpose, a deletion-tolerant code is applied that allows to re-
construct missing parts in a codeword, i.e. to tolerate a distinct number
of failures. The Reed/Solomon (R/S) code is the most general deletion-
tolerant code and can be adapted to a required number of tolerable fail-
ures. In terms of its least information overhead, R/S is optimal, but it
consumes significantly more computation power than parity-based codes.
Reconfigurable hardware can be employed for particular operations in fi-
nite fields for R/S coding by specialized arithmetics, so that the higher
computation effort is compensated by faster and parallel operations. We
present architectures for an application–specific acceleration by FPGAs.
In this paper, strategies for an efficient communication with the accel-
erating FPGA and a performance comparison between a pure software-
based solution and the accelerated system are provided.

1 Introduction

Distributed and parallel computations require globally accessible, fast and re-
liable storage. To avoid bottlenecks and to overcome the relatively low perfor-
mance of single magnetic disks, storage architectures serving these requirements
are distributed systems itself. The basis technique is to parallelize storage ac-
tivities on a group of storage units in combination with a striping layout of the
data. Storage systems that make use of this principle by software–based layers
are, for example, PVFS2[5], Lustre[6] and NetRAID[8]. Fault-tolerant codes take
benefit from the striping layout by providing check information across many stor-
age resources that allows to tolerate the loss of storage units. Performance and
the degree of fault-tolerance provided by a code usually underlie a tradeoff, i.e.
improving reliability increases computation effort for coding which slows down
access rates. This tradeoff can get mitigated by parallelizing coding on a proper
hardware architecture. FPGAs can be such a platform for parallel coding. This
is motivated by the recent advances in this technology that have resulted in pow-
erful devices with reasonable high clock rate and a high number of logic blocks.
Recently, FPGAs have been integrated in pioneer High Performance Computer
(HPC) systems, such as the Cray XD1. These systems distinguish from others

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 14–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

FPGA-Accelerated Deletion-Tolerant Coding 15

by a closer connection of CPUs and FPGAs, which allows low latency and high
bandwidth communication. When FPGAs are configured as customized copro-
cessors, particular applications may gain an execution acceleration of 20 to 100,
yet, achieving these values proofs to be non-trivial. The presented work is based
on the NetRAID [8,9] storage system that is designed for cluster systems with
distributed memory and local disks. If available, FPGAs can be interfaced to
speed up R/S coding. The experiments documented in this paper were run on a
Cray-XD1 machine, equipped with Xilinx Virtex 4 FPGAs.

The paper is structured as follows. In Section 2, a distributed storage system
is introduced with a focus on redundancy coding together with a preliminary
estimation of the acceleration gain. Accelerator designs, beginning with a FPGA-
based Galois Field (GF) multiplier array and yielding to an architecture of a R/S
coprocessor are explained in Section 3, followed by an experimental performance
evaluation in Section 4. A section positioning the presented work within related
research concludes the paper.

2 Distributed Reliable Storage

2.1 Overview

A software-based distributed storage system, called NetRAID is used to com-
pare the pure software approach with an FPGA-accelerated one. In NetRAID,
a group of storage servers establish parallel access to data. Fig. 1 illustrates for
example a group of 6 servers, accessed by 2 clients. Data is striped across N
servers, additionally M servers can be configured to store redundancy. For the
depicted example, parameters (N,M) would be (5,1) for a parity code, and (4,2)
for a R/S code, the latter with the ability to tolerate two failed storage de-
vices. The computations for encoding and decoding are completely done by the
clients that use a library for file system access. Alternatively, an integration into
a filesystem is reached using a FUSE-based daemon. Together with several vari-
ants of parity-based codes, a Reed/Solomon code according to [2,3] is integrated.
By data striping and parallel storage activity, the access bandwidth to data is
improved significantly. Ideally, the bandwidth can be scaled with the number
of storage servers until the network capacity is saturated. Practically, 8 to 16
storage devices work efficiently in parallel. Access rates up to 280 MByte/s were
measured for a single client process and up to 640 MByte/s for collective access
by many clients to a set of 16 storage servers, both without applying any redun-
dancy codes. Redundancy codes slow down access (a) when data is written and
(b) when data is read from a storage system containing a single or a few failed
storage devices. Still a good performance is achieved by parity-based codes. Op-
erations for en- and decoding are bit-wise XORs of 32/64 Bit operands that are
properly supported in all common microprocessors. The situation changes when
Reed/Solomon (R/S) codes have to be calculated on common microprocessors.
The arithmetics necessary for R/S are not supported by instructions directly
and thus require complex and time-consuming calculations.

www.manaraa.com

16 P. Sobe and V. Hampel

Fig. 1. The NetRAID storage system

2.2 Reed/Solomon Coding

Conceptually, the creation of N + M data words and check words (the redun-
dancy) to store on N + M locations is done by multiplying a constant matrix A
with the vector D that consists of N data words:

AD = E, A =
[

I

Gsub

]
, E =

[
D

B

]
(1)

where I represents the (N × N)-identity-matrix, Gsub is a sub-matrix of the
code generator matrix. The structure of the generator matrix guarantees the
invertibility when any M rows get discarded from A. The result vector E contains
the check words in B, with M check words. For encoding, solely redundancy has
to be calculated, dropping the part of the equation system related to the identity
matrix. The check words are calculated word-wise as a linear combination of N
data words and factors, as expressed by equation (2), where bi (i = 1, . . . , M)
are the words on the i-th storage unit among the M redundant ones, dj (j =
1, . . . , N) denote original data words on a data storage unit j. The factors gij

are elements of a (M × N) matrix Gsub.

bi =
N∑

j=1

djgij . (2)

R/S is able to recover up to M failures at all. If an error occurs, the missing
elements of vector D can be recalculated by using data at the non faulty storage
devices. E′ represents the vector with at least N remaining words and A′ is the
subset of N rows of A belonging to the non faulty elements in E′. The data
vector can be recovered with help of the matrix-vector multiplication:

D = A
′−1E′ (3)

www.manaraa.com

FPGA-Accelerated Deletion-Tolerant Coding 17

A′ and E′ can be taken directly from A and E by omitting the rows/elements
that correspond to failed storage devices. The inverse A′−1 is calculated once
after fault detection. Later on, all missing data words can be reproduced by
computing the missed elements in D according to formula (3).

This approach, based on a linear equation system, requires Galois Field (GF)
arithmetics for an exact reproduction of missed data. Integer and floating point
operations are not capable of an exact recovery, due to the inability to operate
within a finite value range and due to rounding errors, respectively. The word size
of GF elements depends on the field used, n=8 for GF(28) fits well to practical
system sizes and leads to elements that can be addressed in a Byte–aligned way.

Practically, redundancy is calculated by multiplying a word from each storage
device with a constant taken from Gsub. After that, the products have to be
added, which fortunately maps to the XOR operation in the Galois Field. This
leads to N multiplications and N − 1 additions in GF arithmetics. The number
of operations is dedicated to a single word on a single redundancy storage. Thus,
the N GF-multiplications and N − 1 XORs must be executed M times each,
as M ≥ 2. The effort as number of operations is summarized in Table 1 for
parity, R/S and for a computationally optimal MDS code, which is available
only for a few special cases (e.g. Evenodd [1] with M = 2). Maximum distance
separable codes[4] (MDS) allow to tolerate any M failures with M additional
storage devices, such as R/S.

Table 1. Computation effort in number of operations

XOR GF-Mult

Parity (M=1) N − 1 0

R/S M × (N − 1) M × N

optimal M × (N − 1) 0

As expected, Reed/Solomon codes are expensive in terms of computation cost.
This coding effort appears for the write operation, because data is to encode
always, even on a group of fault free storage units. The read operation is still
fast for a fault free system, but the access rate drops to a few ten MByte/s in
case of a storage group with failed units. Particularly, the slow write access is an
undesired effect for applications that have to rely on fault-tolerant data storage.
A detailed performance analysis can be found in [9], where for example a write
rate slowdown of about 50 % for M = 2 is reported. R/S coding executed on a
hardware-accelerated platform promises to keep up with fast storage access and
still to achieve the fault-tolerance properties of a MDS code.

2.3 Preliminary Analysis

An analysis shall show, under which system parameters an acceleration by a
FPGA will be beneficial. A limiting factor must be seen in the lower clock fre-
quency of the FPGA, thus a frequency factor T is introduced.

www.manaraa.com

18 P. Sobe and V. Hampel

T =
fFPGA

fCPU
(4)

A microprocessor is able to complete a XOR operation in each clock cycle. An
accelerating coprocessor can deliver results of a GF multiplication and further
logic operations each clock cycle as well, a pipelined architecture taken into
account (see 3.2).

When a software-based execution of a GF multiplication is A times slower
than a XOR operation, the coprocessor would do a comparable computation A
times faster than software, assumed processor and FPGA would run with the
same clock frequency. The effect of the lower FPGA clock rate is taken into
account by factor T . This approach allows to measure A by comparing the XOR
bandwidth (BXOR) with the GF multiplication bandwidth (BGFM) in the CPU.

A =
BXOR

BGFM
(5)

To be comparable, the accelerated R/S encoding includes GF products on
a number of operand pairs, filling the word size of the processor (32/64 Bit).
Additionally, subsequent XOR operations to add the products can get eas-
ily included. Thus, more functions are provided by the accelerator compared
to a single instruction on the CPU. The factor A′ extends A by expressing
these additional computations. N multiplications and N -1 XOR operations pro-
vided by the coprocessor have to be set into relation with N -1 XOR operations
that would be calculated by software for a computationally optimal MDS code.

A′ =
A · N + (N − 1)

N − 1
(6)

With the following criterion,
S = T × A′ (7)

the speedup is quantified. Acceleration by a FPGA is worth when S is signif-
icantly larger than one. Experiments on a Cray XD1 node let us measure the
calculation rates and determine T = 200MHz/2200MHz = 0.09. The results
shown in Table 2 demonstrate that an acceleration related to software-based
R/S can be achieved.

Table 2. Calculation bandwidth (MByte/s) for XOR and GF-multiplications

block size BXOR BGF M A A′ for N=8 S

512 Byte 7721 180 42.9 50.0 4.55

2048 Byte 8533 182 46.9 54.6 4.96

8192 Byte 8684 169 51.4 59.7 5.42

www.manaraa.com

FPGA-Accelerated Deletion-Tolerant Coding 19

3 FPGA-Accelerated Reed/Solomon Coding

3.1 Cray XD1 Environment

As described in [10], the Cray XD1 is a parallel computer with multiprocessor
nodes that can be optionally equipped with several types of Xilinx FPGAs. All
communication between CPUs and FPGAs is handled by the Cray RapidAr-
ray interconnect that directly interfaces the CPUs via HyperTransport. AMD
Opteron CPUs provide a direct access to the HyperTransport, and thus to the
RapidArray. For the FPGA logic, appropriate blocks have to be integrated to
control the communication via RapidArray. For this purpose Cray provides an
intellectual property core to access the RapidArray via two independent commu-
nication interfaces for system and FPGA initiated requests, respectively. As the
FPGA can be clocked with up to 200 MHz and each of the communication chan-
nels being 64 Bits wide, a maximum data rate of 1.6 GB/s per channel can be
achieved. The programmed logic in the FPGA is utilized by processes running
on the CPUs via an application programming interface provided by Cray. To
transfer data from the application into the FPGA, a mapped memory section
is used. The FPGA can issue requests to the application as well. To respond
to these requests the application must register a memory section to which the
FPGA requests are mapped.

3.2 Galois Field Multiplier

As a building block, a finite field or Galois Field multiplier (GFM) based upon
the Mastrovito Multiplier architecture [11] is implemented in the FPGA logic.
The product of two polynomials A (y) and B (y) in GF (2n) is calculated using a
product matrix Z. This product matrix depends on the polynomial coefficients
of the multiplicand and a matrix representation of the field polynomial Q (y),
yielding Z = f (A (y) , Q (y)). The multiplication is carried out as a matrix-vector
multiplication in GF

(
21

)
of the product matrix and the multiplier polynomial

and thus can be implemented with AND and XOR gates. The whole calculation
can be expressed by the following equations:

A (y) · B (y) = C (y) modQ (y)

C (y) =

⎛
⎜⎜⎜⎝

c0
c1
...

cn−1

⎞
⎟⎟⎟⎠ = Z · B (y) =

⎛
⎜⎝

z0,0 · · · z0,n−1
...

. . .
...

zn−1,0 · · · z0,n−1

⎞
⎟⎠ ·

⎛
⎜⎜⎜⎝

b0
b1
...

bn−1

⎞
⎟⎟⎟⎠

This scheme allows to build a highly parallel and pipelined architecture. In the
first stage all the coefficients of the product matrix are calculated according to
the current field polynomial and the multiplicand. In a second stage, all product
matrix rows are multiplied with the multiplier polynomial. Adding the element’s

www.manaraa.com

20 P. Sobe and V. Hampel

products forms the third stage, and writing the result the fourth. This leads to
a latency of four clock cycles for the whole multiplication.

Our implementation is fixed to a width of 8 Bit but variable regarding the
finite field to work on. To configure a particular Galois Field, the appropriate
matrix representation of the field polynomial can be written to the multiplier.

FIFO_a FIFO_b

FIFO_c

GFMCU

data_flowdata_flow

data_flow data_flow

data_flow

data_flow

flo
w

 c
on

tro
l

co
nf

ig
ur

at
io

n
da

ta
Fig. 2. Block diagram of the buffered Galois Field multiplier (BGFM)

As depicted in Fig. 2, factors are buffered in two separate FIFOs before getting
multiplied. Another buffer keeps the results. A control unit synchronizes inter-
actions between all elements, i.e. creates configuration signals and the buffer
control signals. The control unit activates the calculation as soon as both input
buffers are non-empty and as long as the result buffer is not full.

3.3 GF Multiplier Array

As the RapidArray IP-core can issue one quadword, i.e. 64 bits, per cycle four
buffered GF multipliers can work parallel, each with 2 × 8 Bit input width. Doing
so completely utilizes the bandwidth provided by the RapidArray. The multiplier
array receives the input factors via one communication channel and sends the
results via the other. To handle delays or high traffic on the RapidArray, two
modules TXC and RXC have been implemented that control the incoming and
the outgoing data streams. Based on the signaling of the RapidArray and the
filling state of the buffers they may halt and resume communication.

3.4 GF Multiplier Array with Implicit Factors (GFMA-IF)

With binding the logic more specifically to R/S encoding and decoding, obviously
one factor of each multiplication can be held constant. Thus, one factor of each
multiplication must be retrieved from the data flow only, while the other is held
fixed in the accelerator. Correspondingly, each clock cycle 64 bits of input data,

www.manaraa.com

FPGA-Accelerated Deletion-Tolerant Coding 21

eight data words for multiplication, can be processed, using the full capacity of
the FPGA’s input data bus. These considerations apply to the FPGA’s output
data bus as well. Each clock cycle eight products are released and have to be re-
turned. The architecture shown in Fig. 3 utilizes eight GF multipliers in parallel.

RT_core

RXC

TXC

FREQ_Interface

UREQ_Interface

B
G

FM
_1

configuration data

data flow

data flow

co
nf

ig
ur

at
io

n
da

ta

RapidArray

co
ns

t

B
G

FM
_2

co
ns

t

B
G

FM
_3

co
ns

t

B
G

FM
_4

co
ns

t

B
G

FM
_5

co
ns

t

B
G

FM
_6

co
ns

t

B
G

FM
_7

co
ns

t

B
G

FM
_8

co
ns

t

Fig. 3. Multiplier array with implicit input factors (GFMA-IF)

3.5 R/S Coprocessor

In 3.3 and 3.4, two variants of a finite field multiplication acceleration were
presented. So far, the algorithms for encoding and decoding still must be ex-
ecuted in software. When moving the R/S coding completely into the FPGA,
by combining parallel GF multipliers and XOR logic, the CPU can get com-
pletely released from most of the coding operations. The encoding and decoding
algorithm, both represented by a matrix-vector multiplication, can be directly
translated into a hardware structure. Figure 4 depicts a R/S coprocessor layout
of this structure. Data words from N storage units are multiplied with constant
factors by N GF-multipliers and summed by a bitwise N -input parity logic.
This data path generates a single check word for encoding. Several multiplier-
parity paths have to be instantiated for multiple check words that are commonly
required. Similarly to the GF multiplier array with implicit factors, the compu-
tation bandwidth gets fully effective as encoding rate. The code generator matrix
Gsub is written to the coprocessor in advance, and hence, the factors do not have
to be transfered during coding anymore. Redundancy information is transferred
with a lower rate, M

N of the data input rate. Decoding, which is only necessary
when data of failed storage devices has to be reconstructed, is supported by the
presented hardware structure as well. For decoding, the matrix memory has to
be filled with the rows of A′−1 that correspond to the indexes i of the storages
di to reconstruct. The reconstruction requires to fetch N data and redundancy
words, to multiply it with the matrix memory values and to sum the products.
Up to M data words can be reconstructed by the M parallel data paths.

www.manaraa.com

22 P. Sobe and V. Hampel

RX

TX

GFM GFM GFM GFM GFM GFM
FI

FO

FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

MatrixMemory 1st row

FI
FO

FI
FO

MatrixMemory 2nd row

XOR_block XOR_block

... ...

... ...

...

...

...

...

data_flow

data_flow

configuration_
data

co
nf

ig
ur

at
io

n
da

ta

UREQ_
interface

FREQ_
interface

Fig. 4. Structure of the R/S coprocessor

3.6 Comparison

All the three architectures were synthesized on a XC4VLX160 FPGA with 67584
slices in total. As can be seen from the synthesis results in Table 3, the number
of logic cells is not a limiting factor. The multiplier array designs limit the clock
speed to 160 MHz and to 115 MHz for the more complex design of the R/S
coprocessor. The theoretically reachable transfer bandwidth is determined by
the product of clock frequency and the interface width. For the multiplier array,
the computed value is only effective by a half, due to the necessity to transfer
both factors. The actually reached bandwidth depends on the interaction with
the CPUs memory and is slightly lower.

Table 3. Synthesis results

Design Slices used Clock speed Theoretical bandwidth (data)

GF multiplier array 8 % 160 MHz 640 MB/s

GF mult. array with 5 % 160 MHz 1280 MB/s
implicit factors

R/S coprocessor 24 % 115 MHz 920 MB/s

From a functional point of view, the R/S coprocessor embeds most logic func-
tionality in the FPGA and reduces the data stream between CPU and FPGA
to a minimum. Each word written to the data storage units is transferred to
the FPGA once; and also each check word originated by the coding algorithm
traverses the output link from the FPGA to the CPU once. No further process-
ing on the CPU is necessary when the R/S coprocessor is utilized. A drawback
of the R/S coprocessor approach is that data is accessed non-contiguously. To

www.manaraa.com

FPGA-Accelerated Deletion-Tolerant Coding 23

encode a R/S code word, original data must be collected from different positions
in the input data that is commonly organized as a linear data structure. The
multiplier array with implicit factors (GFMA-IF) corresponds closer to the data
structures in a software-based environment. Input data presented in large blocks
(e.g. 6 × 24 kByte) can be transferred sub block-wise (24kByte-wise) to the
GFMA-IF and multiplied with a particular factor. The product array must be
transfered back to the CPU and there XOR-ed to an array of check words. The
GFMA-IF architecture (i) does not embed the entire functionality within the
FPGA and (ii) produces more output data than the R/S coprocessor. Despite of
these disadvantages, the GFMA-IF architecture with a contiguous data access
is still eligible as an accelerator. Eventually, the choice which architecture per-
forms better - the multiplier array with implicit factors or the R/S coprocessor
- depends on the granularity of data distribution and on the performance of the
memory hierarchy for non-contiguous access.

4 Performance Evaluation

In this section we present and discuss the performance of the FPGA-based accel-
erators. The results are set in relation with the software-based GF multiplication.

4.1 Evaluation Method

For evaluation, the computation bandwidth of the GF multiplication in software
as well as for the FPGA-based accelerator has been measured. The FPGA-
accelerated variant includes the transfer of data to the logic and the transfer
of the results back into the address space of the software process. This process
writes a block of factors to the FPGA, where computation of the data starts
immediately and the results are written to the transfer region in the memory.
Transfer to the FPGA, the processing in the multiplier arrays and the transfer
of results back to the memory is fully pipelined. A block-based invocation of
the accelerator functionality has been set up to keep allocated memory at rea-
sonable sizes, while large block sizes lead to a sufficient overlap of transfer and
communication.

To calculate multiplication rates, the time between writing the first quadword
and receiving the last result is taken. In conjunction with the block size in
quadwords, different data streams were formed. We chose to run four sessions in
which four different amounts of data, being 4 MB, 40MB, 160MB, and 640MB,
were multiplied. The block size was varied in each session and the number of
iterations was consequently adapted. Each of these combinations of block size
and iterations was measured ten times and later analyzed statistically.

4.2 Computation Bandwidth

The multiplication rates for the software implementation are shown in Fig. 5.
Two software variants have been evaluated - an ordinary product table lookup

www.manaraa.com

24 P. Sobe and V. Hampel

(Product Lookup) and another product lookup (Index Products) that uses in-
dexes of data and check storages to access a product of a distinct gi,j with a data
word directly. Computation rates of about 130 and 180 MByte/s for each variant
were measured. As expected, the indexed lookup performs better. The deviations
from the mean values are very small, compared to the FPGA–accelerated GF
multiplication.

0,000

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

block size [QW]

m
ea

n
 d

at
a

ra
te

s
[M

B
/s

]

Product Lookup
Index Products

Fig. 5. Software GF(28) multiplication: Mean throughput (MByte/s) for a varied block
size in number of quadwords

The left part in Fig. 6 shows the mean computation bandwidth, measured for
the GF multiplier array with implicit factors (GFMA-IF). Slightly lower mean
values, but with very similar progression have been observed for the R/S copro-
cessor (710 MByte/s maximum instead of 795 MByte/s). The four different plots
correspond to the four amounts of data multiplied, the sessions mentioned above.
The plot in the right part of Fig. 6 shows the error of the mean values against the
block size. It was calculated by dividing the root mean square deviation by the
square root of the number of measurements for one combination. When varying
the transfer block size in a range from 64 to 32K quadwords, the data rate heavily
depends on the block size. With further increasing block sizes, the rate stabilizes
at about 800 MByte/s. The threshold block size for fast communication with the
FPGA-coprocessor is 16384 quadwords, which equals 128KByte. The errors of
the data rates indicate that the transfer rates fluctuate heavily for small blocks.
Errors get very small as soon as a block size of 32768 quadwords is reached,
which equals 256KByte. The achieved computation bandwidth depends on the
utilization of both of the buses. An implementation of the architecture can be
clocked at 160 MHz. On the input bus a contiguous data stream can be imple-
mented, allowing a maximum transfer rate of 1280 MByte/s. On the output bus
a wait cycle has to be implemented after each eight byte block, reducing the
maximum transfer rate by 8/9 to 1138 MByte/s. Another aspect is the larger
data amount to return in combination with a practically slower output link of
the FPGA. We learned from debugging, that communication on the output link

www.manaraa.com

FPGA-Accelerated Deletion-Tolerant Coding 25

0,000

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

block-size [QW]

m
ea

n
 d

at
a-

ra
te

 [
M

B
/s

]

MB4

MB40

MB160

MB640

0,000

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

block-size [QW]

d
at

a-
ra

te
 e

rr
o

r
[M

B
/s

]

MB4

MB40

MB160

MB640

Fig. 6. FPGA-based GFMA-IF: Mean values and errors of the coding throughput

is stalled more frequently than on the input link. The R/S coprocessor is not
affected by that slightly lower output rate. The number of results words is M
per N input words. Practically, M is less than N and the lower output rate is
fully compensated by that.

4.3 Insights

From the interpretation of the measured computation rates, three points shall
summarize our insights.
(1) Coarse granular software-accelerator interaction - To achieve high
data throughput the coprocessor should process blocks of at least 16384 quad-
words. In distributed storage systems such block sizes are usual, e.g. 24 KByte
per block for striping across eight nodes in NetRAID yields to 24576 quadwords
(192 KByte) per invocation of the coding function.
(2) Estimated speedup has been reached - Comparing the hardware–
accelerated GF multiplication with the software variant, at least a speedup of
four is reached. We compared the fastest software function with the slowest vari-
ant of FPGA-accelerated coding on reasonable large blocks. This corresponds to
the preliminary estimated speedup in Section 2.
(3) GFMA-IF and R/S coprocessor are both appropriate solutions
- The R/S coprocessor and the GFMA-IF architecture both utilize the input
bandwidth for GF multiplications fully. The R/S coprocessor adds the products
internally and less output data has to be transferred. This compensates a lower
transfer rate back to the CPU and releases the memory from traffic. Still a
disadvantage is the non-contiguous data access by the R/S coprocessor. Thus,
the multiplier array with implicit factors (GFMA-IF) is another proper solution.

5 Related Work

Reliable Storage is commonly supported with RAID adapters that work at the
I/O bus level. Except expensive RAID controllers for storage area networks,

www.manaraa.com

26 P. Sobe and V. Hampel

there is still a gap between hardware accelerated storage and reliable distributed
storage, especially when the storage system is implemented with COTS com-
ponents. ClusterRAID[7], combines reliable storage with hardware acceleration.
The approach is different from NetRAID in the way that data is kept locally
on disks. A group of storage nodes, each storing data objects independently,
is protected by an erasure–tolerant code. Updates are forwarded to dedicated
redundancy nodes that update the redundancy information. ClusterRAID im-
plements a R/S code as suggested in [2]. Acceleration by FPGAs and graphic
processors were reported that directly base on logarithm-tables for Galois Field
multiplication. A FPGA-based coprocessor is presented in [13], comparable to
the GF multiplier array as presented here. The processor does not cover the
entire coding data path for R/S; instead it can be configured to perform GF
multiplications in a SIMD mode.

GF arithmetic is supported by a few digital signal processors (such as Texas
Instruments TMS processors) by simple GF multiplication instructions. Complex
GF instructions, such as multiply-add which is often needed for R/S coding, are
suggested in [14] for a SIMD implementation in a processor. There are generally
numerous systems that implement Galois field arithmetics for error correction in
digital communication systems or digital storage with correction of arbitrary Bit
corruption and burst errors in the data stream. In comparison, less development
is directed to storage systems with an erasure characteristic. For distributed sys-
tems, most R/S systems still base on software coding. Despite advances in code
construction such as Cauchy R/S codes that allow faster software coding than
classical R/S codes, only a few systems make use of specialized hardware. Only
recently, FPGAs can be coupled close enough to the CPUs that an acceleration
effect can be reached. Today, the trend is visible to add more specific function-
ality to processors or to provide configurability. In this context our work covers
the variant of CPU-FPGA cooperation for fast coding. Other variants of sophis-
ticated coding solutions become feasible, e.g. using configurable coprocessors in
parallel on a chip for R/S coding.

6 Conclusion

Sophisticated codes for reliable distributed storage, such as Reed/Solomon, are
compute-intense and bound the data access bandwidth. Acceleration by cus-
tomized logic is a way to reach fast encoding and decoding, keeping up with
higher data rates of aggregated storages. The design space, spanning from a Ga-
lois Field multiplier array to a R/S coprocessor that covers the entire data path
for code word processing has been analyzed. It could be shown that the band-
width of the FPGA-based accelerator is noticeable higher compared to software
coding. The coding bandwidth is bounded by the transfer bandwidth to and
from the accelerator. Despite, for the current implementation on a Cray XD1 we
could reach a factor four for coding bandwidth acceleration. With such a FGPA
acceleration, coding in a distributed data storage architecture is faster than the
aggregated storage bandwidth and nearly as fast as high-speed networks.

www.manaraa.com

FPGA-Accelerated Deletion-Tolerant Coding 27

References

1. Blaum, M., Brady, J., Bruck, J., Menon, J.: EVENODD: An Efficient Scheme for
Tolerating Double Disk Failures in RAID Architectures. IEEE Transactions on
Computers. Vol. 44, No.2, February 1995

2. Plank, J. S.: A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like
Systems. SOFTWARE - PRACTICE AND EXPERIENCE. pp. 995-1012, Septem-
ber 1997

3. Plank, J. S., Ding Y.:, Note: Correction to the 1997 Tutorial on Reed-Solomon
Coding. Technical Report, University of Tennessee, UT-CS-03-504, April 2003

4. Mac Williams, F.J., Sloane, N.J.A.: The Theory of Error–Correcting Codes. Part
I, North Holland Publishing Company, Amsterdam, New York, Oakland, 1977

5. Carns, P. H., Ligon, W. B., Ross, R. B., Thakur R.: PVFS: A Parallel File System
for Linux. Proc. of the 4th Annual Linux Showcase and Conference, pp. 317-327,
2000

6. Braam, P.J. et al.: The Lustre Storage Architecture., Cluster File Systems Inc.,
http://www.lustre.org/docs/lustre.pdf, 2004

7. Wiebalck, A., Breuer, P. T., Lindenstruth, V., and Steinbeck, T. M.: Fault-Tolerant
Distributed Mass Storage for LHC Computing. CCGrid Conference, 2003

8. Sobe, P.: Data Consistent Up- and Downstreaming in a Distributed Storage Sys-
tem. Proceedings of Int. Workshop on Storage Network Architecture and Parallel
I/Os, pp. 19-26, IEEE Computer Society, 2003

9. Sobe, P. and Peter, K.: Comparison of Redundancy Schemes for Distributed Stor-
age Systems. 5th IEEE International Symposium on Network Computing and Ap-
plications, pp 196-203, IEEE Computer Society, 2006

10. Cray Inc.: Cray XD1 FPGA Development. Release 1.4 documentation, 2006
11. Paar, C.: A New Architecture for a Parallel Finite Field Multiplier with Low Com-

plexity Based on Composite Fields. IEEE Transactions on Computers, Vol. 45, No.
7, pp. 856-861, 1996

12. Gilroy, M. and Irvine, J.: RAID 6 Hardware Acceleration. Proc. of the 16th Int.
Conference on Field Programmable Logic and Applications 2006, pp. 67-72, 2006

13. Lim, W.M. and Benaisse, M.: Design Space Exploration of a Hardware-Software
Co-designed GF(2m) Galois Field Processor for Forward Error Correction and
Cryptography. In: International Symposium on System Synthesis 2003, pp. 53-58,
ACM Press, 2003

14. Mamidi, S., Iancu, D., Iancu, A., Schulte, M. J. and Glossner, J.: Instruction Set
Extensions for Reed-Solomon Encoding and Decoding. Proceedings of the 16th. Int.
Conf. on Application-specific Systems, Architecture and Processors (ASAP’05),
IEEE, 2005

www.manaraa.com

LIRAC: Using Live Range Information to

Optimize Memory Access

Peng Li1, Dongsheng Wang2, Haixia Wang3, Meijuan Lu4, and Weimin Zheng5

National Laboratory for Information Science and Technology
Research Institute of Information Technology

Tsinghua University,Beijing, China
{p-li021, lmj4}@mails.tsinghua.edu.cn,

{wds2, hx-wang3, zwm-dcs5}@tsinghua.edu.cn

Abstract. Processor-memory wall is always the focus of computer ar-
chitecture research. While existing cache architecture can significantly
mitigate the gap between processor and memory, they are not very ef-
fective in certain scenarios. For example, when scratch data is cached,
it is not necessary to write back modified data. However, existing cache
architectures do not provide enough support in distinguishing this kind
of situation. Based on this observation, we propose a novel cache archi-
tecture called LIve Range Aware Cache (LIRAC). This cache scheme can
significantly reduce cache write-backs with minimal hardware support.

The performance of LIRAC is evaluated using trace-driven analysis
and simplescalar simulator. We used SPEC CPU 2000 benchmarks and a
number of multimedia applications. Simulation results show that LIRAC
can eliminate 21% cache write-backs on average and up to 85% in the
best case.

The idea of LIRAC can be extended and used in write buffers and
CMP with transactional memory. In this paper, we also propose LIve
Range Aware BUFfer (LIRABuf). Simulation results show that the im-
provement of LIRABuf is also significant.

Keywords: LIRAC, Live Range, Cache, Write Buffer, Memory Hierar-
chy.

1 Introduction

Processor-memory wall [1] is always one of the most important problems in
computer architecture research. While processor follows the well-known Moores
law, doubling performance every 18-24 months, the speed of memory access only
grows about 7% every year [2]. In the upcoming Chip Multi-Processor (CMP)
era, the presence of more processors on a single chip significantly increases the
demand of off-chip bandwidth and exacerbates this problem even more.

Modern computers are often equipped with various buffers, such as write-back
cache, write buffer and commit buffer in CMP with transactional memory [3][4].
We observe that in computers with buffering technology, actual write operation

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 28–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

LIRAC: Using Live Range Information to Optimize Memory Access 29

happens after write instruction commitment. By the time memory write oper-
ation executes, the data written might already go out of its live range which
causes a useless write operation. However, existing buffer architectures cannot
effectively take advantage of this observation.

In this paper, we explicitly distinguish writes in processor domain and mem-
ory domain, and further propose LIve Range Aware Cache (LIRAC) and Live
Range Aware Buffer (LIRABuf). LIRAC and LIRABuf focus on reducing the
number of write-back operations, and they do not affect read operations. With
write operations decreased, LIRAC and LIRABuf can reduce both execution
time and energy.

Trace-driven simulations show that LIRAC can reduce 21% write-backs on
average and up to 85% in the best case, and LIRABuf can reduce 23% write-
backs on average and up to 84% in the best case.

The rest of this paper is organized as follows. Section 1 reviews related work.
Section 3 describes the architecture of LIRAC. Section 4 explains software sup-
port for LIRAC architecture. Section 5 and Section 6 present methodology and
simulation results of LIRAC architecture. Section 7 shows that live range archi-
tecture can be used in other buffers such as write buffer and CMP with transac-
tional memory. Finally Section 8 draws conclusions and proposes future work.

2 Related Work

Various efforts have been made to optimize memory access. New memory tech-
nologies like DDR (Double Data Rate) and QDR (Quad Data Rate) are devel-
oped to speedup memory access. Some researches integrate memory and pro-
cessor onto a single chip to minimize access time [5][6] . Memory compression
[7] compresses data to reduce memory bandwidth consumption. While previous
studies focus mainly on the reduction of average memory access time, this paper
focuses on reducing the number of memory access operations, particularly cache
write-back operations.

The live range of register has been studied by previous research. In [8],
Franklin and Sohi studied the lifetime of register instances and concluded that
many registers were short-lived. Efforts have been made to reduce register com-
mitments in superscalar processors to ease the pressure of register allocation and
save energy [9][10][11][12]. This paper studies the live range of memory address
and focuses on reducing memory write operations. Compared with previous regis-
ter live range analysis, memory optimization is more important because memory
access is far more expensive than register access.

Lepak et al. observed that many store instructions have no effect since the
written value is identical to the content already existing in memory [13]. Based
on this observation, silent store architecture was proposed in which each store is
converted into a load, a comparison, followed by a store (if the store is non-silent).
Silent store architecture reduces write operations at the expense of increasing

www.manaraa.com

30 P. Li et al.

read operations. In the proposed LIRAC and LIRABuf architectures, the number
of write operations can be reduced without increasing read operations.

In some SOC systems, addition to a data cache that interfaces with slower
off-chip memory, a fast on-chip SRAM called Scratch-Pad memory, is often used
to guarantee fast access to critical data. However, to efficient utilize on-chip
memory space, carefully allocation must be made manually by sophisticated
programmers.

3 Live Range Aware Cache Architecture

In this section, we will articulate the architecture of LIRAC in detail. We first
distinguish two types of writes: writes in processor domain and writes in memory
domain (Section 3.1), then we define the live range and dead range of memory
address (Section 3.2). We propose the architecture of LIRAC in Section 3.3,
and then in Section 3.4 we show that LIRAC architecture can also be used in
multi-level cache. In section 3.5, we discuss debugging support for LIRAC.

3.1 Write in Processor and Memory Domain

We observe that there are two types of writes in a computer system, writes
in processor domain (Wp) and writes in memory domain (Wm). Wp refers to
write instructions committed by processor and Wm refers to write operations
performed to memory (e.g. cache write-back). Wp is the output of processor
while Wm is the input of memory system. In computers without buffering tech-
nology, Wp and Wm is roughly the same. The number of Wp and Wm is the
same and they are in the same order. However, in computers with buffering tech-
nology, both the occurrence and sequence of Wp and Wm may be different, as
shown in Fig. 1.

Fig. 1. Writes in Processor and Memory Domain

www.manaraa.com

LIRAC: Using Live Range Information to Optimize Memory Access 31

Fig. 1 shows the assembly code of an example program. The first instruction
writes R1 to memory address ADDR0. The value is temporally saved in cache
and not written to memory. At this time, cache and memory are incoherent.
Cache holds the current value while memory holds the stale value. The following
two instructions write R2 to ADDR1 and R3 to ADDR0 respectively. Up till this
time, all values are buffered in the write-back cache and no actual memory write
operation has occurred. The fourth instruction reads memory address ADDR1,
which is different from ADDR1 but mapped to the same cache location. The
cache line containing ADDR1 is swapped out and replaced by the new line. At
this time, the dirty cache line containing ADDR1 is written back to memory.
Similar operation happens when the fifth instruction is executed.

Wp and Wm of ADDR0/ADDR1 are shown in the figure. From the figure,
we can tell that both the occurrence and sequence of Wp and Wm are different.
For a given address, Wm always lags behind Wp.

Wp is the inherent property of software. Given a program, the occurrence
and sequence of Wp is fixed, so the number of Wp cannot be reduced. On the
other hand, Wm is determined by both software and hardware. A program may
generate different Wm sequences with different memory hierarchy. This paper
focuses on how to reduce the number of Wm.

3.2 Live Range and Dead Range

To reduce Wm, the purpose of Wm is reexamined first. A write operation is
useful only if the memory address might be read again. If a write operation is
definitely followed by another write operation to the same memory address, then
the first write becomes useless.

Fig. 2. Example of Live Range and Dead Range

Fig. 2 shows a sequence of instructions. The first instruction writes R1 to
ADDR0. If it is executed on a computer with no buffers or write-back caches,
the value must be written to memory to ensure correctness. If the program is
executed on a computer with write-back cache, the value can be buffered in cache
temporally.

www.manaraa.com

32 P. Li et al.

Thereafter the second instruction reads the value from cache. In conventional
write-back cache, when the fourth instruction is executed, the dirty cache line
containing ADDR0 will be swapped out and written back to memory. Nonethe-
less, if we can know in advance that the next memory access to ADDR0 is
definitely write, as shown in the figure, we can discard the dirty line without
writing it back to memory. This observation can be used to reduce Wm.

To achieve this, the live range and dead range of a memory address are defined.
The word Live Range is borrowed from compiler technology. A live range of a
variable in compiler refers to an isolated and contiguous group of nodes in the
flow graph in which the variable is defined and referenced [14]. Here we define
the live range and dead range of a memory address. The live range of a memory
address is from a write of the memory address to the last read of the address
before another write of the same address. Similarly, the dead range of a memory
address is from the last read of the memory address to the next write of the
address. The definitions are also illustrated in Fig. 2.

Notice that live range of a memory address is always ended with a read instruc-
tion. A new instruction, LastRead, is added to support live range identification.
LastRead works similarly to normal read instruction, moving data from memory
to register, except that it indicates the end of live range of the memory address.
In Section 4, we will explain how to generate LastRead instructions for a given
program.

3.3 Architecture of LIRAC

In conventional write-back cache, a cache line will be written back to memory if
the data has been modified. In our proposed LIRAC architecture, a cache line is
written back to memory if the data has been modified AND the modified address
is in its live range. In other words, when the data is in its dead range at eviction,
nothing will be written back regardless of the dirty flag. LIRAC architecture does
not change the replacement policy of cache, nor does it change read operations.
Compared with conventional write-back cache, LIRAC can significantly reduce
the number of write operations with minimal hardware support.

For simplicity, we first assume that each cache line contains only a single cache
word. Fig. 3(a) shows the state transition graph of a cache line in conventional
write-back cache. There are three states: M, S and I. State I indicates that the
address is not located in cache. S indicates that the address is in cache and it is
clean. M indicates that the address is in cache and it is dirty. Three operations,
R, W and P, standing for Read, Write and rePlace respectively, can act on these
states. If operation P acts on the state S, the cache line is just replaced without
write back to memory. If P acts on the M, the cache line is written back to
memory before replaced by another cache line.

Fig. 3(b) shows the state transition of a cache line in a LIRAC system. A new
operation, LR, is added to indicate the LastRead instruction mentioned above.
LR acts similarly to normal read operation except on state M. If LR acts on M,
the next state is S because the live range of the given address ends. In other
words, if a cache line in dead range is replaced by others, it is simply thrown

www.manaraa.com

LIRAC: Using Live Range Information to Optimize Memory Access 33

Fig. 3. Cache State Transition Graph

Fig. 4. Organization of a LIRAC Cache Line

away rather than written back to main memory. With the additional transition,
the number of Wm can be reduced.

When a cache line contains multiple data words, each word is associated with
a dirty bit to indicate whether the word has been modified or not, as shown in
Fig. 4. When the cache line is swapped out, all the dirty bits in the cache line are
ORed together. If the result is 1, then the cache line is written back, otherwise
it is thrown away. When LastRead instruction is executed, the dirty bit of the
corresponding data word is cleared to zero.

Apparently there is a tradeoff between the granularity of dirty flag and the
chance of reducing write-back. When the whole cache line is tracked with one
dirty flag, the scheme may not reduce Wm since the compiler may not generate
many LastRead instructions due to multiple objects being mapped into the same
cache line. On the other hand, if each byte is tracked with a dirty flag, then the
compiler can generate more LastRead instructions, possibly reducing the number
of Wm. However, there is more overhead caused by the dirty flag bookkeeping.
In this paper, we assume data word granularity.

In order to implement the LIRAC, three hardware modifications are needed.
First, a new instruction, LastRead, is added to the machine ISA. LastRead in-
struction acts just like normal Read instruction, transferring data from memory

www.manaraa.com

34 P. Li et al.

to registers, except that it will clear the dirty bit of the corresponding data word.
Secondly, each cache word must have a dirty bit in LIRAC. Compared with con-
ventional cache, where the whole cache line share a single dirty bit, LIRAC will
take more area. However, the overhead is insignificant. On a 32-bit machine, the
overhead is less than 1/32 = 3.1%. The third change is the modification of the
state machine of the cache controller.

Transitions from dirty to clean state are added to reduce the probability of
memory write backs. This can be implemented by a few logic gates and will not
affect the critical path of the whole processor.

3.4 Multi-level LIRAC

Modern computers are often equipped with multi-level caches. In multi-level
cache hierarchy, the highest level directly connected to memory often adopts
write-back policy, while the lowest level near processor may be writeback or
write-through.

Fig. 5. Cache Reaction on LastRead Command

We first discuss LIRAC with write-through L1 cache and write-back L2 cache,
as illustrated in Fig. 5(a). In this case, when processor decodes the LastRead
instruction and issues LastRead command to L1 cache, if the address hits L1
cache, correct data is read from L1 cache and passed to processor. Meanwhile
L1 cache issues an Undirtify command to L2 cache to clear the corresponding
dirty bit. If the address misses L1 cache, the command LastRead is just passed
to L2 cache. L2 cache will act as the previous single-level LIRAC architecture,
i.e. returning read data and clearing the corresponding dirty bit.

www.manaraa.com

LIRAC: Using Live Range Information to Optimize Memory Access 35

Fig. 5(b) shows LIRAC with write-back L1 cache and write-back L2 cache.
Compared with Fig. 5(a), the dirty bit in L1 cache is also cleared, hence both
L1 and L2 caches can benefit from reduced write-backs.

3.5 Debugging Support for LIRAC Architecture

During program debugging, a programmer may want to examine the value of
overdue variables that have already gone out of their live range. In this case,
LIRAC can be disabled so that it will roll back to conventional write-back cache.

4 Software Support For LIRAC

As discussed earlier, live range and dead range of a memory address is deter-
mined only by program behavior and has nothing to do with memory hierarchy
(i.e. whether the computer has a cache or what kind of cache structure it has).
Therefore software needs to convert some normal Read instructions to LastRead
instructions. There are three ways to support LIRAC architecture in software:
compiler analysis, binary transformation and memory tracing.

4.1 Compiler Analysis

Apparently using compiler to add LastRead instructions is the most desirable
way to support LIRAC, for it can be both accurate and transparent to program-
mer. In this paper, we touch the subject by only outlining the principles. In some
modern compilers (e.g. gcc 3.4.1 and later versions), variables are expressed in
SSA (Single Static Assignment) form [15], where every variable is assigned ex-
actly once. If the live range of every variable in SSA form can be calculated, live
range of each memory address can be determined. As a matter of fact, there is
already a live range analysis pass in the register allocation, as shown in Fig. 6.
Before register allocation, all the variables are expressed in pseudo-register form.
Register allocation pass is used to allocate and assign registers from pseudoreg-
ister to architecture registers. Therefore it is quite feasible to support LIRAC
architecture with minor modification.

There is another common case where live range can be determined. When
a function call or an interrupt occurs, context needs to be saved and restored
later. Registers are saved to memory on the entrance of function call or interrupt
and read back from memory at exit. Normally, context restore is the last read,
so LastRead instructions can be used in restoring context for function call or
interrupt.

4.2 Binary Transformation

Although compiler can generate live range information accurately, it needs source
code of the program. For programs without source code, binary code can be
analyzed to determine the live range. Binary transformation is more difficult

www.manaraa.com

36 P. Li et al.

Fig. 6. Compiler Register Allocation Process

and less accurate than compiler analysis because less information can be ob-
tained. Context restore at the end of function call can be easily converted by
binary transformation. However, using binary transformation to determine the
live range of local variable is much more difficult.

4.3 Memory Tracing

The third approach to generate live range information is memory tracing. This
is achieved by collecting all memory traces and then analyzing the traces to find
the live range of each memory address. Tracing is much simpler to implement
than the other two methods aforementioned, but it may not be as practical.
Trace studies depend on many factors such as program input and thus is un-
reliable. Moreover, trace analysis is an oracle heuristics approach (i.e. perfect
branch prediction, perfect memory disambiguation, etc.) and thus the result can
only be used as an upper bound. However, the result of trace analysis can be
helpful to compiler analysis and binary transformation. Since trace analysis is
simple, we use this method in this paper to evaluate the performance of LIRAC
architecture.

4.4 Two Types of LastReads

A read instruction can be executed many times and leave multiple instances
in memory trace. For some read instructions, all instances mark the end of
live range of the corresponding address. We define thsese reads as Type 1 Las-
tRead, as shown in Fig. 7(a). For some other read instructions, only some in-
stances are LastReads while other instances are normal reads. For example,
in Fig. 7(b), the shaded instruction is executed 10 times; only the last in-
stance is LastRead. We define this type of partial LastReads as Type 2 Las-
tRead.

Type 1 LastRead can be exploited by both compiler and binary transforma-
tion with simple substitution. Type 2 LastReads cannot be simply converted to
LastRead instructions, but sophisticated compiler can change program to expose
LastReads, as shown in Fig. 7(c).

www.manaraa.com

LIRAC: Using Live Range Information to Optimize Memory Access 37

Fig. 7. Two Types of LastReads

5 Methodology

Memory trace simulation contains three steps: trace generation, trace analysis
and trace execution. 3 multimedia applications and 10 SPEC 2000 applications
are selected to evaluate the performance of LIRAC architecture. All benchmarks
are compiled with -O2 option.

Simplescalar simulator [16] is used to generate traces. Trace generation is to
get memory access sequence in processor domain, so sim-fast mode is selected
because no detailed hardware implementation is necessary. Each trace item con-
tains three fields: memory access type, memory access address and instruction
address. The size of the generated trace files are huge. For example, running gcc
in test mode will generate a trace file larger than 5GB. To save disk space and
simulation time, scaled inputs instead of standard inputs are used in some bench-
marks including gcc, gzip, and bzip2. Sampling technique is not used because
accurate live range information is not available in sampled traces.

Trace analysis is used to find live range of every memory address. The algo-
rithm is sketched in Fig. 8(a). Live structure is a hash map with address as key
and trace number as value. It is used to track the last read. Trace file is fed
to trace analyzer sequentially. For a read trace item, Live structure is updated;
for a write item, trace analyzer will look up Live structure and mark previously
recoded read as LastRead.

Type 1 and Type 2 LastRead can be distinguished using algorithm shown in
Fig. 8(b). The first pass picks all read instructions with normal read instances
and records them in set NotType1LastRead. The second pass distinguishes the
two types of LastRead instances by looking up the set NotType1LastRead.

In trace execution, both the original trace and optimized trace are run on a
trace simulator to evaluate the effect of LIRAC architecture. Dinero IV simula-
tor [17] is a fast, highly configurable trace-driven cache simulator developed by
Wisconsin University. It supports multi-level cache, different replacement policy
and sub-block organization. Less than 10 lines are modified to support LIRAC
architecture in Dinero IV simulator.

www.manaraa.com

38 P. Li et al.

Fig. 8. Algorithm for Trace Analysis

6 Results

Fig. 9 shows the result of memory trace analysis. From the figure, we can see
that about 4-28% of total memory accesses are LastReads.

Fig. 9. Memory Access Trace Breakdowns

Fig. 10 shows the reduction of LIRAC with direct mapped cache and 4-
way set-associative cache. The baseline cache structure is single-level, write-
back, write-alloc with LRU replacement policy. For each benchmark, there are
6 stacked bars, respectively for cache sizes 1KB, 4KB, 16KB, 64KB, 256KB and
1MB. The total height of each stacked bar shows the maximum reduction from

www.manaraa.com

LIRAC: Using Live Range Information to Optimize Memory Access 39

binary transformation in percentage(i.e. optimizing both type-1 and type-2 Las-
tReads), whereas the lower portion of the stacked bar represents the limit of
compiler analysis (i.e. optimizing type-1 LastReads only).

Fig. 10. Memory Access Trace Breakdowns

From the experiment results, following conclusions can be made: 1. LIRAC
architecture can reduce the number of memory write operations (Wm) in all
cases. LIRAC architecture can be used in various cache structures.

2. The effect of LIRAC depends heavily on the method of software support.
Compiler analysis can achieve much better result than binary transformation.
Trace-driven simulations show that LIRAC can reduce 21% memory writes on
average and up to 85% in the best case. Through binary transformation, LIRAC
can only reduce 6% memory writes on average and up to 45% in the best case.

3. The effect of LIRAC varies from program to program. For some programs
like mcf, very few memory writes can be reduced; for other programs like crafty,
binary transformation is of little use while compiler analysis can be very helpful.
Both methods are helpful for multimedia benchmarks.

7 Live Range Aware Buffer

In addition to write-back cache, live range aware architecture can be applied to all
kinds of buffers such as write buffer. In Live Range Aware write Buffer(LIRABuf),
if buffered data finishes its live range, commitment can be omitted. Software sup-
port for LIRABuf is exactly the same as LIRAC since live range information is
determined by program only.

www.manaraa.com

40 P. Li et al.

Figure 11 shows the benefit of live range aware write buffer using trace-driven
simulation. For each benchmark, from left to right, buffer size is 1KB, 4KB,
16KB, 64KB and 256KB respectively. Interpretation of the stacked bars is the
same as in Figure 10. With binary transformation (entire bar), LIRABuf can
reduce 7% memory writes on average and up to 44% in the best case. With com-
piler analysis (lower bar), LIRABuf can reduce 23% memory writes on average
and up to 85% in the best case.

Fig. 11. Reduction of Wm using LIRABuf architecture

Transactional memory is a recent and promising architecture for CMP[3][4].
A transaction is a sequence of memory loads and stores that either commits
or aborts with atomicity, isolation and consistency. When a transaction ends,
a bunch of write operations are committed to memory and system intercon-
nect to maintain coherence. Contention tends to be unavoidable when multiple
transactions end at the time.

Table 1. Taxonomy of Data in CMP with Transactional Memory

In this paper, we propose a taxonomy for data in CMP with Transactional
Memory based on usefulness to other CPUs and later transactions in local CPU
(shown in Table 1). If different types of data can be discriminated and treated
differently, both bandwidth and power consumption can be saved. For example,
local data can be written to memory without broadcasting to other CPUs and
invalid data can be just discarded. How to distinguish local data from global data
is beyond the scope of this paper, but with live range information, invalid data
can be distinguished from local data. When a transaction commits, if written
data is local and out of live range, it can be thrown away to save energy and
alleviate bus contention.

www.manaraa.com

LIRAC: Using Live Range Information to Optimize Memory Access 41

8 Conclusions and Future Work

In this paper, we made the following contributions:
1. Explicitly distinguished two kinds of writes: write in processor domain (Wp)

and writes in memory domain (Wm) and defined live range and dead range of
a memory location.

2. Proposed the architecture of LIve Range Aware Cache (LIRAC) and Live
Range Aware BUFfer (LIRABuf).

3. Proposed a taxonomy for data in CMP with Transactional Memory that
could possibly save energy and alleviate bus contention.

We also discussed the principle of software support for live range identification.
Simulation results show that the potential benefit of LIRAC and LIRABuf can
be great. While the initial results are promising, a lot more work needs to be
done. In the future, we plan to study and work on following issues:

1. Compiler implementation to support LIRAC and LIRABuf.
2. Live range aware transactional memory architecture.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable feedback. This material is based on work supported by National Sci-
ence Foundation of China(No.60673145), National Basic Research Program of
China (2006CB303100), Basic Research Foundation of Tsinghua National Lab-
oratory for Information Science and Technology (TNList) and Intel / University
Sponsored Research.

References

1. Win. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the
obvious, ACM SIGARCH Computer Architecture News, Volume 23 , Issue 1 March
1995.

2. Semiconductor Industry Association, International Technology Roadmap for Semi-
conductors, http://www.itrs.net/Common/2004Update/2004Update.htm. 2004.

3. Lance Hammond, Vicky Wong, Mike Chen, Ben Hertzberg, Brian D. Carlstrom,
John D. Davis, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and
Kunle Olukotun, Transactional Memory coherence and consistency, Proceedings
of 31st Annual International Symposium on Computer Architecture (ISCA-31)
2004, 102-113.

4. Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill and David
A. Wood, LogTM: Logbased Transactional Memory, Proceedings of 12th Annual
International Symposium on High Performance Computer Architecture (HPCA-
12), 2006.

5. Maya Gokhale, William Holmes, Ken Iobst, Processing in memory: the Terasys
massively parallel PIM array. IEEE Computer,28(4):23 31, April 1995.

6. Christoforos Kozyrakis, Joseph Gebis, David Martin, Samuel Williams, Iakovos
Mavroidis, Steven Pope, Darren Jones, David Patterson and Katherine Yelick,
Vector IRAM: A Media-oriented Vector Processor with Embedded DRAM. 12th
Hot Chips Conference, August, 2000.

www.manaraa.com

42 P. Li et al.

7. Jenlong Wang and Russell W. Quong, The feasibility of using compression to in-
crease memory system performance, Proc. of IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
pages 107-113, 1994.

8. Manoj Franklin and Gurindar S. Sohi, ”Register Traffic Analysis for Streamlining
Inter-Operation Communication in Fine-Grain Parallel Processors”, Proceedings
of 25th International Symposium on Microarchitecture, 1992, 236–245.

9. Luis A. Lozano C. and Guang R. Gao, ”Exploiting Short-Lived Variables in Su-
perscalar Processors”, Proceedings of 28th International Symposium on Microar-
chitecture, 1995, 292–302.

10. Guillermo Savransky, Ronny Ronen and Antonio Gonzalez, ”A Power Aware Reg-
ister Management Mechanism”. International Journal of Parallel Programming,
Volume 31, Issue 6, December 2003, 451–467.

11. Dmitry Ponomarev, Gurhan Kucuk, Ponomarev, Oguz Ergin and Kanad Ghose,
”Isolating Short-Lived Operands for Energy Reduction”, IEEE Transaction on
Computers, Vol. 53, No. 6, June 2004, 697–709.

12. Milo M. Martin, Amir Roth, and Charles N. Fischer, ”Exploiting Dead Value
Information”. Proceedings of 30th International Symposium on Microarchitecture,
1997, 125–135.

13. Kevin M. Lepak, Gordon B. Bell, and Mikko H. Lipasti, Silent Stores and Store
Value Locality, IEEE Transactions on Computers, Vol. 50, No. 11, November 2001.

14. Frederick Chow and John L. Hennessy, Register Allocation for Priority based Color-
ing, Proceedings of the ACM SIGPLAN 84 Symposium on Compiler Constructions,
1984, 222-232.

15. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman and F. Kenneth
Zadeck, Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Transactions on Programming Languages and Systems,
13(4): 451-490, October 1991.

16. Todd Austin, Eric Larson and Dan Ernst, ”SimpleScalar: An Infrastructure for
Computer System Modeling”, IEEE Computer 35(2), 2002, 59–67.

17. Jan Edler and Mark D. Hill, ”Dinero IV Trace-Driven Uniprocessor Cache Simu-
lator”, http://www.cs.wisc.edu/ markhill/DineroIV, 2003.

www.manaraa.com

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 43 – 56, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimized Register Renaming Scheme for Stack-Based
x86 Operations

Xuehai Qian, He Huang, Zhenzhong Duan, Junchao Zhang, Nan Yuan,
Yongbin Zhou, Hao Zhang, Huimin Cui, and Dongrui Fan

Key Laboratory of Computer System and Architecture
Institute of Computing Technology

Chinese Academy of Sciences
{qianxh,huangh, duanzhenzhong,jczhang,

yuannan,ybzhou,zhanghao,cuihm,fandr}@ict.ac.cn

Abstract. The stack-based floating point unit (FPU) in the x86 architecture limits
its floating point (FP) performance. The flat register file can improve FP
performance but affect x86 compatibility. This paper presents an optimized
two-phase floating point register renaming scheme used in implementing an
x86-compliant processor. The two-phase renaming scheme eliminates the
implicit dependencies between the consecutive FP instructions and redundant
operations. As two applications of the method, the techniques used in the second
phase of the scheme can eliminate redundant loads and reduce the
mis-speculation ratio of the load-store queue. Moreover, the performance of a
binary translation system that translates instructions in x86 to MIPS-like ISA can
also be boosted by adding the related architectural supports in this optimized
scheme to the architecture.

1 Introduction

X86 is the most popular ISA and has become the de facto standard in microprocessor
industry. However, the stack-based floating point ISA has long been considered as a
weakness of the x86 in compare with the competing RISC ISAs. The addressing of FP
stack register is related to a Top-Of-Stack (TOS) pointer. Every x86 FP instruction has
implicit effects on the status of the floating point stack, including the TOS pointer and
incurs implicit dependencies between consecutive floating point instructions.
Furthermore, the stack-based architecture requires one of the operands of an FP
instruction comes from the top of the stack, so some transfer or swap operations are
needed before real computations.

The AMD x86 64-bit processor attacks the above problems by using a flat register
file. It uses SSE2 to replace the stack-based ISA with a choice of either IEEE 32-bit or
64-bit floating point computing precision. However, even the 64-bit mode can not
obtain the totally same results as the original double extended FP computing precision.
Another fact is that a lot of legacy libraries are written in highly optimized floating
point assembly; rewriting of these libraries takes a long time. Therefore, the
replacement of the stack-based ISA is not easy. We should seek for novel techniques to
bridge the FP performance gap between x86 and RISC architecture.

www.manaraa.com

44 X. Qian et al.

This paper first presents a comprehensive and solid methodology of implementing
x86-compliant processor based on a generic RISC superscalar core. The techniques to
handle x86-specific features such as, complex instruction decoding, Self Modified
Code (SMC), non-aligned memory access are outlined. After giving a motivating
example, we emphasize on the key elements of our methodology, 2-phase register
renaming scheme for attacking the stack-based FP operations. The first phase of the
renaming scheme eliminates the implicit dependencies imposed to the consecutive FP
instructions by maintaining speculative stack-related information in the instruction
decode module. The second phase eliminates almost all of the redundant operations by
value “short-circuiting” in rename table, which actually achieves the effect of a flat
register file. Critical issues in processor design such as branch misprediction and
exception handling are carefully considered.

The scheme has two applications. First it can be used to reduce the mis-speculation
ratio of loads in implementing POP instructions in x86 ISA. The results of stores may
be directly “short-circuited” to the loads in the renaming module in some cases, so that
the redundant loads are eliminated and will not incur mis-speculations in the load-store
queue. Secondly, the generic RISC core that originally supports x86 ISA by binary
translation can be augmented with the 2-phase renaming scheme, so that the
performance of the translated code is boosted. The codes generated by the original
binary translation system have a poor performance for FP programs due to the
significant semantic gap between the RISC and x86 FP ISA.

The rest of the paper is organized as follows. The design methodology of the
prototype processor architecture is presented in section 2. Section 3 provides an
example which motivates our optimized scheme. Details about the proposed scheme
are presented in section 4. Section 5 briefly summarizes the two applications of the
scheme. Section 6 describes the simulation environment and methodology. The
simulation results are presented in section 7. The related work is outlined in section 8.
We conclude the paper in section 9.

2 Overview of the GodsonX Architecture

Fig. 1 shows the architecture of the proposed prototype x86 processor GodsonX which
is built based on the core of Godson-2C[1] core, a typical RISC 4-issue out-of-order
superscalar. The architectural supports for x86 architecture are presented as shaded
blocks.

The front end of x86 processor is much more complex than the RISC processor. It is
organized in 5 pipeline stages. The first stage generates instruction addresses. The
second stage is composed of five modules providing the content of instructions,
pre-decode information and performing branch prediction. The third stage, decode-0,
consists of four sub-modules and is responsible for instruction alignment and queue
management. The decode-1 module reads the aligned x86 instructions from the first
instruction register (IR1 in the figure), translates them into the “RISC style”
intermediate instructions and some micro-ops, and puts them in the second instruction

www.manaraa.com

 Optimized Register Renaming Scheme for Stack-Based x86 Operations 45

Fig. 1. GodsonX architecture

register (IR2 in the figure). The decode-2 module generates sequences of micro-ops and
put the sequences in the micro-op queue (uop in the figure). The methods that decode-2
uses to generate micro-op sequences include: short micro-op sequence Decoder (SD),
Long micro-op sequence Decoder (LD), Memory access Mode decoder (MD) and
micro-op Rom (urom). The uop queue acts as a buffer between decode-2 and the
register rename module inside the RISC core, enabling stable instruction issue from the
front end.

The architectural supports to the FP stack are distributed. These modules work
cooperatively to guarantee the correct stack status while ensuring efficient execution of
floating point instruction. The decode-1 module maintains a local copy of TOS and
Tag, and has a table storing the x86 FP instruction information. Each micro-op should
carry the TOS after dispatched from the register renaming stage. The reorder queue
(ROQ) handles FP exceptions specified in x86 ISA. The branch queue (BRQ) keeps the
local TOS and Tag of the branch instruction for misprediction handling. The floating
point data type (Tag) of the result value is computed in FALU1/2, and passed to ROQ
in write back stage. When a floating point instruction commits, ROQ writes the TOS
and Tag into the architectural FP status and tag word. Under exceptions, the decode-1
module recovers the TOS and Tag from these registers.

We tried to handle some burdensome x86 ISA features, such as Self Modified Code
(SMC) and non-aligned memory accesses, etc. by architectural modifications or
supports. The method to handle SMC is in the granularity of cache line, so it has the
advantage over the method adopted by Intel, which detects and handles the event in the
granularity of page. Specifically, we added a Simplified Victim Cache (SVIC) to the
decode module. As a store writes back, we use the address to look up the ICache and
SVIC, if an entry is found, then an SMC occurs, then the pipeline need to be flushed.
Similarly, the miss queue is also looked up as a store writes back. When the ICache

www.manaraa.com

46 X. Qian et al.

misses, it is also needed to look up the data in the DCache, while sending the request to
miss queue, trying to find the data in memory. Similarly, it is also necessary to look up
the data in the store queue when ICache misses, since store queue serves as a buffer
between pipeline and DCache. In our processor, the L2 and L1 cache are exclusive. If a
missed L1 access hits a dirty line in L2 cache, L2 cache should also write the line back
to memory, otherwise the data will be lost. As an optimization, we modified the former
memory access architecture in our processor and proposed an efficient way to execute
non-aligned memory accesses in x86. In the new architecture, the LSQ(LD/ST Queue)
is placed in the position before the DCache and DTLB accesses. In this way, the latency
in cache tag compare stage is reduced, since the load and store dependencies are only
needed to be checked when the loads/stores are issued from the LSQ. We also leverage
this architecture to execute non-aligned memory access efficiently, this kind of
operations are split into two operations after it goes through the LSQ, and the first
access can be interleaved with the address calculation of the second one. The 80-bit
memory accesses in FP instructions can be handled in a similar way. Moreover, we
found that segment register is usually not changed as x86 program executes, so we can
speculate on its value, which makes the address calculation simpler. The performance
of memory access module can also be optimized by making the common operations run
faster, which reduces the hardware cost. We found that in 2 issue memory access
pipeline, one-port TLB is enough in the common case. The MDP in register renaming
module is a simple Memory Distance Predictor, which can reduce the possibility that
the pipeline flush due to load/store conflicts.

3 Motivating Example

A floating point computation example is presented in this section, showing the
advantages of the optimized scheme. Consider the computation: atan((a+b)/(a*c)), a
possible x86 instruction sequence and two possible corresponding micro-op sequences
are given below.

X86 instructions naïve micro-op sequence optimized sequence
FADD ST(1);
FXCH ST(4);
FMULP ST(1),ST(0);
FLD ST(3);
FPATAN;

fadd fr(5), fr(5), fr(6)
fmov fr(9), fr(5)
fmov fr(5), fr(1)
fmov fr(1), fr(9)
fmul fr(6), fr(6),fr(5)
fmov fr(5), fr(1)
fpatan fr(5), fr(5), fr(6)

fadd fr(5), fr(5), fr(6)
fxch fr(5), fr(1)
fmul fr(6), fr(6), fr(5)
fmov fr(5), fr(1)
fpatan fr(5), fr(5), fr(6)

Fig. 2 shows the change of FP stack status when the instructions are executed. We
assume the left-most the initial state, where TOS is 5. The FXCH instruction swaps the
content of ST(4) and ST(0). The suffix “P” in the multiplication instruction implies that
a “pop” operation is required. The “pop” increases the TOS and empties the former top
element. The last instruction computes the arc-tangent function of (ST(0)/ST(1)), the
source operands position are fixed, so there is no need to specify them in instruction. It
reflects a feature of stack-based architecture. Also, the FPATAN instruction includes a
“pop” operation.

www.manaraa.com

 Optimized Register Renaming Scheme for Stack-Based x86 Operations 47

Fig. 2. Stack operations of the x86 instructions

We use four FP register number address spaces. FP registers used in FP instructions
are called relative FP stack registers (ST(i), i∈[0,7]), the relative FP registers are
mapped to absolute FP stack registers (st(i), i∈[0,7]) by adding ST(i) to TOS
(module 8). The FP registers used in micro-op are FP logical registers (fr(i),
i∈[0,15]). The FP registers after renaming in the RISC core are FP physical registers
(pr(i), i∈[0,63]). st(0)-st(7) are directly mapped to fr(0)-fr(7). Temporary registers are
used to hold intermediate results. The micro-op sequences can use up to 8 temporary FP
registers which are fr(8)-fr(15). In the naïve sequence, we use three transfer operations
(“fmov”) to implement FXCH. In the optimized scheme, a dedicated swap operation
(“fxch”) is used.

Table 1 and table 2 show the execution and register mapping processes of the two
micro-op sequences. We find that the number of micro-ops that would go into the issue
queue is 7 in the naïve sequence and 3 in the optimized sequence; while the numbers of
physical registers consumed are 10 and 6, respectively. Both the micro-ops and the
mapped physical registers are reduced. Due to the nature of stack-based architecture,
there are inherently a large amount of FXCH instructions in x86 FP program. Reducing
the number of this kind of operations can directly reduce the execution time of the
program. Moreover, it will alleviate the burden to the physical register file and issue
queue, which makes other operations execute faster as well.

In the next section, we will present our novel 2-phase renaming scheme. The first
phase of renaming releases the serial requirement in decoding x86 FP instructions via
speculative local copy of certain floating point information in decode-1 module. The
second phase adopts an optimized RAM-based approach, which can support the
optimization.

Table 1. Register mapping and execution of the naive micro-op sequence

Map-Table orig. inst renamed inst mapping executed ops
fr1->pr1,fr5->pr5,
fr6->pr6

fadd
fr5,fr5,fr6

fmul pr9,pr5,pr6 fr5->pr9 (pr5+pr6)->pr9

fr1->pr1,fr5->pr9,
fr6->pr6

fmov fr9,fr5,
fmov fr5,fr1
fmov fr1,fr9

fmov pr10,pr9
fmov pr11,pr1
fmov pr12, pr10

fr9->pr10
fr5->pr11
fr1->pr12

pr9->pr10
pr1->pr11
pr10->pr12

fr1->pr12, fr5->pr11,
fr9->pr10, fr6->pr6

fmul
fr6,fr6,fr5

fmul pr13, pr6,
pr11

fr6->pr13 (pr11*pr6)->pr13

fr1->pr12, fr5->pr11,
fr9->pr10, fr6->pr13

fmov fr5,fr1 fmov pr14, pr12 fr5->pr14 pr12->pr14

fr1->pr12, fr5->pr14,
fr9->pr10, fr6->pr13

fpatan
fr5, fr5, fr6

fpatan
pr15, pr14, pr13

fr5->pr15 atan(pr13/pr14)
->pr15

www.manaraa.com

48 X. Qian et al.

Table 2. Register mapping and execution of the optimized micro-op sequence

Map-Table orig. inst renamed inst mapping executed ops
fr1->pr1,fr5->pr5,
fr6->pr6

fadd fr5,fr5,fr6 fmul pr9,pr5,pr6 fr5->pr9 (pr5+pr6)->pr9

fr1->pr1,fr5->pr9,
fr6->pr6

fxch fr5, fr1 eliminated fr5->pr1
fr1->pr9

Swap the FP physical
register that fr5 and fr1
mapped

fr1->pr9, fr5->pr1,
fr6->pr6

fmul
fr6,fr6,fr5

fmul pr10, pr6, pr1 fr6->pr10 (pr1*pr6)->pr10

fr1->pr9, fr5->pr1,
fr6->pr10

fmov fr5,fr1 eliminated fr5->pr9 Make fr5 map to the
physical register that
fr1 mapped to, it is pr9

fr1->pr9, fr5->pr9,
fr6->pr10

fpatan
fr5, fr5, fr6

fpatan
pr11, pr9, pr10

fr5->pr11 atan(pr10/pr9)
->pr11

4 Optimized 2-Phase Register Renaming Scheme

4.1 Mapping from Stack Registers to Logical Registers

In the first phase mapping, the FP stack registers are mapped to FP logical registers. We
adopt a speculative decoding technique in this process. The decode-1 module maintains
a local copy of partial TAG and TOS. The TAG is partial since it just indicates if a FP
register is empty. The decode stage determines the absolute FP register based on the
local TOS and update these information after each FP instruction is decoded, according
to the specifications of each FP instruction. In this way, the decoding of FP instructions
can be pipelined, since the decode module does not have to wait for the committed TOP
and TAG information. Here we should note that the effects of each FP instruction on
the stack are totally predictable.

If no exceptions, the local TOS and Tag is synchronized with the architectural
TOS and Tag in the FP status and tag word when the instruction commits. In case of
exceptions, the changes to the local TOS and Tag at the decode stage have to be
recoverd to the architectural state. We explain the branch misprediction case by an
example.. Fig. 3(a) presents a branch misprediction scenario. The nodes 1 and 2
represent the committed instructions, the nodes 3 and 4 represent the instructions
executed in the correct path but not committed, node 4 is the branch instruction, and
nodes 5-7 are the instructions in the wrong path, executed and need to be cancelled.
From this scenario, if the TOS and Tag are recovered from the FP status word and the
Tag word, the decode stage will hold TOS and Tag information of the last instruction
committed before the branch, that is node 2. But this is incorrect, since what we need
is the TOS and Tag after the execution of the branch instruction, the node 4.
Therefore we need to keep the TOS and Tag of each branch instruction in the BRQ
shown in Fig. 1. When a branch misprediction occurs, the decode stage recover the
TOS and Tag from BRQ.

www.manaraa.com

 Optimized Register Renaming Scheme for Stack-Based x86 Operations 49

 (a) (b)

Fig. 3. (a) Branch misprediction scenario. (b) An example: detection of FP “stack underflow”.

The partial TAG information can be used in the detection of stack overflow/underflow.
An FP stack underflow occurs when an instruction references an empty FP stack
register, a stack overflow occurs when an instruction loads data into a non-empty FP
stack register. Fig. 3(b) shows an example of detecting FP stack underflow conditions.
The partial TAG is the 8-bit vector at the bottom; “0” indicates the related position in
FP stack is empty, “1” means the position is non-empty.

The Floating Point Instruction Table (FPIT) is used as an effective and low cost way
to maintain the information of each FP instruction in decode module. After analyzing
the bit codes of each instruction, we found certain group of instructions has similar bit
codes and similar effects to the stack. We can represent information for these FP
instructions by just one entry in FPIT. This technique makes the table smaller. In each
entry, we store the effects to the stack. More details about this table are out of the scope
of the paper.

4.2 Optimized Register Mapping in the RISC Core

There are two ways to implement the register renaming, the RAM-based design and
CAM-based design, they use separate or merged architectural and rename register files.
The former design of Godson-2C processor adopts the CAM approach, which can not
support the optimization in the paper. We propose a new RAM-based register renaming
design. This design allows one physical register to be mapped to more than one logical
registers. Fig. 4 gives the outline of this architecture.

We use three mapping tables to maintain the relationship between FP logical
registers and physical registers. The Floating point Logical Register Mapping Table
(FLRMT) is used to rename logical registers to physical registers. It has 16 entries
representing 16 floating point logical registers. The field “pname” indicates which
physical register the logical register is mapped to. Each FLRMT entry contains 8
lastvalid items, corresponding to 8 BRQ entries. The lastvalid(i) keeps the mapped
physical register number when the branch instruction in BRQ(i) is mapped. The
Floating point Physical Register Mapping Table (FPRMT) merely maintains the state
of each physical register. It has 64 entries corresponding to 64 physical registers. There
three fields in each entry. The state records the state of the physical register, brqid is
used in branch misprediction to recover the correct register mapping, and counter
indicates how many logical registers are mapped to this physical register. When the
register renaming stage finds an entering instruction an “fmov”, it directly maps the

www.manaraa.com

50 X. Qian et al.

Fig. 4. Optimized register renaming inside RISC core

destination register to the physical register of the source register, and increases the
counter for the physical register. When “fxch” is encountered, the source and
destination registers are simply swapped. When an instruction committed, the counter
for the destination physical register is decreased. We need four bits for the counter
field, since at most 16 logical registers can be mapped into a physical register. Note that
the change of mapping between logical and physical registers at the register renaming
stage by fmov or FXCH is speculative, the instructions can be canceled later because of
exception. The Floating point Architectural Mapping Table (FARMT) records the
committed physical register which the logical register is mapped to, it is used in
exception recovery. This table has 16 entries corresponding to 16 logical registers.
Each entry just records the physical register that the logical register mapped to. The
table is updated when an instruction is committed. When an exception is encountered,
the renaming stage can recover the mapping relationship from FARMT. This optimized
architecture simplifies lookup logic compared with the CAM-based implementation
and is more scalable.

TAG update should also be considered in the optimization. When an instruction
committed, the tag for the destination register should be updated, reflecting the latest
status. In our design, the tag is computed in FALU, but the eliminated “fxch” and
“fmov” will not enter FALU. This is not a problem for “fxch”, since its two operands
are both architectural visible registers, so the only thing to do as an instruction commits
is to swap the tags for the two operands in the FP tag word. For “fmov”, it is more
difficult because the source operand may be a temporary register. To make the design
simple, the optimization is not applied to the special case. As the statistics data shows,
the special case is rare.

5 Applications of the Renaming Scheme

The proposed scheme has two applications. First, it can be used as the supports for the
Godson-2C processor that implements MIPS-like ISA and runs application-level
binary translator to support x86 applications. The binary translator that we conducted
the experiments is Digital Bridge[6]. It works in a Godson based LINUX server, and
translates the elf file of x86 ISA to Godson ISA (MIPS-like). Although the translator
works well for fix point programs the performance of floating point applications
suffers. It is mainly due to the remarkable ISA semantic difference between x86 and
general propose RISC in floating point specification. The existing method on binary

www.manaraa.com

 Optimized Register Renaming Scheme for Stack-Based x86 Operations 51

translation is not efficient enough to bridge such a gap, architectural supports are
needed to narrow the gap. Without architectural supports, the Bridge translator use
static FP registers in Godson processor to emulate FP stack operations. When loading
data into the FP stack register, for example, ST(2), we must dynamically determine the
corresponding absolute register and put the value in fr(2). The process will incur a lot of
swap operations in the target Godson code. This approach still needs the help of
memory. The valid values on the stack should be loaded from and stored into memory
at the beginning and the end of each basic block. Finally, this approach assumes that the
TOS is the same and TAGs are all valid at entry of each basic block. Only under this
assumption, ST(i) can always correspond to fr(i), regardless of the preceding path from
which the code arrives the entry. But a large amount of extra code must be added at the
head of the translated code for each block to judge if the above speculation is held.
From the experiment results, the condition is satisfied almost all the time. It is
obviously a waste to execute a large segment of extra code for rare conditions. We add
our architectural support for FP stack to Godson-2C processor without x86 features.
With these supports, we can directly use the relative FP registers in the translated code,
making the burden of maintaining status of FP stack to hardware.

As the second application of the method, it can also used to eliminate redundant
loads. An impediment to Godson-X performance is the high miss rate of load
speculation. After analyzing the program execution behavior, we found that the
problem came from the x86 PUSH and POP instructions for parameter passing in
function calls. These two instructions are mapped to store and load micro-ops. In a
function call, the store and load come in pair and close to each other. Godson-X always
speculates on the value of the load before the store commits. Therefore when the store
commits, mis-speculation occurs. We added a 4-entry table to the register renaming
module to forward the store value to the loads. The table maintains the source register
numbers and memory addressing information of the 4 most recent store instructions. If
a load instruction’s memory address matches to one of the entries, it can be eliminated
by modifying the register mapping relationship to directly get the stored value.
Moreover, we are trying to extend this technique to eliminate redundancy in control
flow with some hardware support. It is out of the scope of this paper.

6 Experimental Infrastructure

We have developed a cycle accurate full-system simulator for x86-compliants. Unlike
the Simplescalar-based performance simulators, which decouple the execution and
timing logic and can only provide an estimation of the performance, our simulator
models the exact signals and timing except inside the ALU/FALU. This makes the
result more accurate. Table 3 shows the detailed configuration of the simulator. For the
latency of FP operations, we make following assumptions on latency: absolute,
negation, comparison and branch take two cycles; addition, subtraction and conversion
take three cycles; multiplication takes four cycles; division and square root take 4 to 16
cycles to complete; and transcendental functions take 60 cycles to complete. The real
computation is carried out by a modified library of standard FP software
implementation, the main modifications are FP exception handling.

www.manaraa.com

52 X. Qian et al.

Table 3. Configuration of GodsonX processor

decode width at most 2 x86 instructions each cycle
functional units 2 fix point ALU, 2 floating point ALU, 1 memory
ROQ 32 entries
BRQ 8 entries
fix issue queue 16 entries
float issue queue 16 entries
branch predictor Gshare: 9-bit ghr, 4096-entry pht, 128-entry BTB,direct mapped
L1-ICACHE 64KB 4-way set associative
L1-DCACHE 64KB 4-way set associative
memory access latency 50 cycles for the first sub block, 2 cycles for consecutive sub

blocks

We use X86 emulator Bochs[9], which can boot LINUX and Window XP, as a
reference in validating our design. Every time an instruction is committed, the whole
architectural state is compared with Bochs. Due to this method, we debugged and
validated our design. Finally, our simulator can boot the LINUX and Window XP.

SPEC CPU2000 is used as our benchmark. First, we find the representative region of
each program by a SimPoint-like performance simulator for GodsonX processor, which
is built from the counterpart for Godson-2C processor[5]. We fast-forward each
program to its representative region and run 1 billion cycles using the cycle-accurate
simulator to get precise results.

7 Simulation Results and Discussion

7.1 Performance and Characteristics of x86 Programs

Fig. 5(a) presents the performance comparison between our processor and the 2.4 GHz
Intel Celeron processor. The IPC of the latter is obtained as follows. We first run each
program in Bochs and record the instruction count, them we execute it in a real Celeron
machine, record the execution time. We compute the IPC of each program and then
compare it with the IPC of representative region in GodsonX. For some programs such
as wupwise, swim, facerec and swim, performance of GodsonX is much better than that
of Celeron, for programs like applu, equake, ammp and apsi, performances are similar.
However, for some programs, especially sixtrack, GodsonX’s performance is worse.
Fig. 5(b) shows the latency distribution of micro-ops in GodsonX, the height of each
bar represents the absolute number of cycles from map to commit. We can see that most
of the cycles are due to register mapping or waiting for commit. This indicates that a
large physical register file or reorder buffer is needed. Fig. 5(c) shows the cycle
distribution with respect to the number of micro-ops committed in a cycle. For every
program more than one micro-op is committed each cycle on average, especially for
ammp, in most of the time four micro-ops are committed each cycle. It indicates that
the efficiency of GodsonX is quite good. Fig. 5(d) presents the average number of
micro-ops per x86 instruction, which indicates the quality of our micro-op mapping. On
average about 2 are needed to implement an x86 instruction.

www.manaraa.com

 Optimized Register Renaming Scheme for Stack-Based x86 Operations 53

Fig. 5. Execution results of x86 program on our processor

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

apsi.non-opt apsi.opt

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

lucas.non-opt lucas.opt
 (a) (b)

Fig. 6. Comparisons of register renaming

(a) (b)

Fig. 7. IPC increse and the ratio of eliminated operations

www.manaraa.com

54 X. Qian et al.

0%

20%

40%

60%

80%

100%

120%

140%

wu
pw
is
e

sw
im

mg
ri
d

ap
pl
u

me
sa

ga
lg
el ar

t

eq
ua
ke

fa
ce
re
c

am
mp

lu
ca
s

fm
a3
d

si
xt
ra
ck

ap
si

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

GCC equake gzip mgrid twolf

 (a) (b)

Fig. 8. Effects on the binary translation system and the ratio of eliminated mis-speculation

7.2 Effects of the Optimized Scheme

Fig. 6 shows the effect of the optimization in mitigating the burden to register
renaming. The information is indicated by the percentage of total execution time during
which certain number of renaming table entries are occupied. We find that after
optimization, the curves shift left. This means that fewer entries are used in certain
percentage of time. Fig. 7(a) shows the improvement to IPC. We can see that both apsi
and lucas get a big IPC increase, as high as 30%. This observation is consistent with the
optimization effect on usage of the renaming table shown in Fig.6. Fig. 7(b) shows the
number of “fmov” before and after the optimization. The elimination of “fmov” comes
from two sources. First, the “fmov” for FXCH are completely eliminated by simply
swapping the source and destination registers mappings. Secondly, a large portion of
other “fmov” resulted from FLD or FST are eliminated by the register renaming
module. We can see that more than 10% of micro-ops are removed on average. In
Figure 8, we show the impacts of the application of technique. From (a) we can see the
performance of the binary translation system boosts significantly, this is due to the
augmented architecture on which the code generated by the binary translation executes.
In this architecture, certain features of the floating point stack are incorporated, so that
the binary translation system can easily generate simple and efficient code for the x86
FP application. In (b), the ratio of the eliminated load mis-speculations are presented,
the mis-speculation is frequently in SPEC2000 Integer programs, so we show the ratios
for several ingeter programs.

7.3 Hardware Costs Comparison

This section we show two alternative implementations of the register renaming module.
One is the design proposed in this paper, the other is the register renaming module in
Godson-2C. The results in Table 4 are derived from Synopsys Design Compiler with
0.13um standard cell library for TSMC. We can see from the comparison that the
critical path of the optimized scheme is slightly longer than the design of Godson-2C,
but the area comsumed by the GodsonX register renaming module is greatly reduced.
The main reason to the decrease is in the Godson-2C design, a large combinational

www.manaraa.com

 Optimized Register Renaming Scheme for Stack-Based x86 Operations 55

Table 4. Hardware cost comparison

 Lat. (ns) Area(um2)
GodsonX 1.25 616841.937500
Godson-2C 1.23 981161.687500

logic is used to generate a table that maps the logical registers to physical registers, this
part of logic consumes a lot of area. Although the proposed scheme has a longer critical
path than that of Godson-2C, the RAM-based design apporach has better scalability.
When the number of physical registers increases, the proposed scheme will show more
advantages over the former design.

8 Related Work

The implementation of FP stack is a critical issue in x86-compliant processor design.
Some mechanisms have been patented by Intel[4] and AMD[3], but they are different
from the scheme proposed in this paper. The main distinctions are that they normally
adopt multiple tables to hold the stack related information, and the structures to hold the
information are distributed in the processor. The synchronizations under exceptions
and branch mispredictions are much more complicated. The modification to the RISC
core in our scheme is trivial and the handling of exceptions or mispredictions is easy to
understand and implement. More important is that we present an applicable
methodology of implementing the FP stack based on a generic RISC core efficiently.

The elimination of FXCH has been used in some x86 processor, but it can only be
done when FXCH comes with certain types of instructions, in those conditions, it can
be combined with the surrounding instructions and eliminated. Both Intel and AMD
employ a dedicated unit to execute FXCH instruction. Our scheme is more general and
has lower cost. We only incorporate some simple functions in register renaming stage
to detect the optimization opportunities. As in our scheme, not all FXCH in Intel or
AMD processors can be eliminated. For example, under stack error (stack overflow or
underflow), AMD processor will generate 5 micro-ops for the FXCH instruction.
Moreover, from P4 processors this operation will have 3-cycle execution time again.
Due to the elegant style of eliminating such operations in our scheme, the optimization
will exist continually in our processor.

Our attempt is the first effort to implement a full x86-compliant processor based on a
typical RISC core. The methodology presented in this paper can be applied to build
processor in different ISAs. We also provide some x86 program characteristics and
behaviors on our processor. IA-32 execution layer[7] and transmeta morphing
software[8] are two efforts to translate x86 programs to other ISAs. Software based
approaches are adopted in these systems, and the underlying architectures are VLIW,
while our methodology is based on hardware architectural support to an existing and
more general superscalar architecture. It is also the first work to investigate the impact
of architectural support to binary translation.

www.manaraa.com

56 X. Qian et al.

9 Conclusion

This paper presents an optimized floating point register renaming scheme for stack
based operations used in building an x86-compliant prototype processor. We compared
the hardware cost of two register renaming designs; the proposed scheme has a slightly
longer critical path but greatly reduced area. We find a large amount of swap and data
transfer instructions in FP programs, and most of them can be eliminated by our
proposed scheme. The IPC improvements due to the optimization are as high as 30%
for some programs, and near 10% on average. Similar techniques in the scheme can
also be extended to eliminate redundant loads and used as the architectural supports for
RISC superscalar core to boost the performance of the binary translation system which
run on that architecture. Our future work includes finding the optimal design trade-off
in the co-designed x86 virtual. We will implement the x86 features that are critical to
the performance and easy to be supported in hardware, for example the supports for the
floating point stack, while implementing the complicated and unusual features in
software.

Acknowledgement

This work is under the support of the National Basic Research Program, also called 973
program in China (grant number: 2005CB321600) and Innovative Program of ICT
(grant number: 20056610).

References

1. Weiwu Hu, Fuxin Zhang, Zusong Li. Microarchitecture of the Godson-2 processor. Journal
of Computer Science and Technology, 3 (2005) 243-249.

2. David Patterson, John Hennessy. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, Inc. 1996.

3. Michael D. Goddard, Scott A. White. Floating point stack and exchange instruction. US
Patent Number: 5,857,089. Jan.5, 1999

4. David W. Clift, James M. Arnold, Robert. P. Colwell, Andrew F. Glew. Floating point
register alias table fxch and retirement floating point register array. US Patent Number:
5,499,352. Mar.12, 1996

5. Fuxin Zhang. Performance analysis and optimization of microprocessors. PHD Thesis,
Institute of Computing Technology, Chinese Academy of Sciences. (6) 2005

6. Feng Tang. Research on dynamic binary translation and optimization. PHD Thesis, Institute
of Computing Technology, Chinese Academy of Sciences. (6) 2006

7. Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun Wang,
Yigai Zemach. IA-32 execution layer: a two-phase dynamic translator designed to support
IA-32 applications on Itanium®-based systems. MICRO-2003 (11) 2003

8. Dehnert. J.C., Grant. B.K., Banning. J.P, Johnson, R.; Kistler. T., Klaiber. A., Mattson. J.,
The transmeta code morphing software: using speculation, recovery, and adaptive
retranslation toaddress real-life challenges. CGO-2003 (3) 2003

9. Bochs: The Open Source IA-32 Emulation Project . http://bochs.sourceforge.net/

www.manaraa.com

A Customized Cross-Bar for Data-Shuffling in
Domain-Specific SIMD Processors

Praveen Raghavan1,2, Satyakiran Munaga1,2, Estela Rey Ramos1,3,
Andy Lambrechts1,2, Murali Jayapala1,

Francky Catthoor1,2, and Diederik Verkest1,2,4

1 IMEC vzw, Kapeldreef 75, Heverlee, Belgium - 3001
{ragha, satyaki, reyramos, lambreca, jayapala, catthoor,

verkest}@imec.be
2 ESAT, Kasteelpark Arenberg 10, K. U. Leuven, Heverlee, Belgium-3001

3 Electrical Engineering, Universidade de Vigo, Spain
4 Electrical Engineering, Vrije Universiteit Brussels, Belgium

Abstract. Shuffle operations are one of the most common operations in SIMD
based embedded system architectures. In this paper we study different families
of shuffle operations that frequently occur in embedded applications running on
SIMD architectures. These shuffle operations are used to drive the design of a cus-
tom shuffler for domain-specific SIMD processors. The energy efficiency of var-
ious crossbar based custom shufflers is analyzed and compared with the widely
used full crossbar. We show that by customizing the crossbar to implement spe-
cific shuffle operations required in the target application domain, we can reduce
the energy consumption of shuffle operations by up to 80%. We also illustrate the
tradeoffs between flexibility and energy efficiency of custom shufflers and show
that customization offers reasonable benefits without compromising the flexibil-
ity required for the target application domain.

1 Introduction

Due to a growing computational and a strict low cost requirement in embedded systems,
there has been a trend to move toward processors that can deliver a high throughput
(MIPS) at a high energy efficiency (MIPS/mW). Application-domain specific proces-
sors offer a good trade-off between energy efficiency and flexibility required in em-
bedded system implementations. One of the most effective ways to improve energy
efficiency in data-dominated application domains such as multimedia and wireless, is
to exploit the data-level parallelism available in these applications [1,2]. SIMD exploits
data-level parallelism at operation or instruction level. Prime illustrations of processors
using SIMD are [3,4,5], Altivec [6], SSE2 [7] etc.

When embedded applications like SDR (software defined radio), MPEG2 etc., are
mapped on these SIMD architectures, one of the bottlenecks, both in terms of power
and performance, are the shuffle operations. When an application like GSM Decod-
ing using Viterbi is mapped on Altivec based processors, 30% of all instructions are
shuffles [8]. Functional unit which can perform these shuffle operations, known as

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 57–68, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

58 P. Raghavan et al.

shuffler or permutation unit, is usually implemented as a full crossbar, which requires a
large amount of interconnect. It has been shown in [9] that interconnect will be one of
the most dominant parts of the delay and energy consumption in future technologies1.
Hence it is important to minimize the interconnect requirement of shufflers to improve
the energy efficiency of future SIMD-based architectures.

Implementing a shuffler as a full crossbar offers extreme flexibility (in terms of va-
rieties of shuffle operations that can be performed), but such a flexibility often is not
needed for the applications at hand. Only a few specific sequences of shuffle opera-
tions occur in embedded systems and the knowledge of these patterns can be exploited
to customize the shuffler and thus to improve its energy efficiency. To the best of our
knowledge, there is no prior art that explores different shuffle operations in embedded
systems and exploits these patterns to design energy-efficient shufflers.

In this paper, we first study different families of shuffle operations or patterns that
occur most frequently in embedded application domains, such as wireless and multime-
dia, and later use them to customize crossbar based shuffler. Customization exploits the
fact that shuffle operations of target application domains does not require all inputs be
routed to all outputs, which is the case in full crossbar, and thus reduces both the logic
and interconnect complexity.

This paper is organized as follows: Section 2 gives a brief overview of related work
on shuffle networks in both the networking and SIMD processor domain. Section 3
describes different shuffle operations that occur in embedded systems. Section 4 shows
how crossbar can be customized for required shuffle operations and to what extent such
customization can help. Section 5 presents experimental results of custom shufflers for
different datapath and sub-word sizes. Finally we conclude the paper in section 6.

2 Related Work

A large body of work exists for different shuffle networks in the domain of network-
ing switches and Network-on-Chips [10]. These networks consists of different switches
like Crossbar, Benes, Banyan, Omega, Cube etc. These switches usually have only a
few cross-points, as the flexibility that is needed for NoC switches is quite low. When
a large amount of flexibility is needed, a crossbar based switch is used. Research like
[11,12,13,14,15,16] illustrates the exploration space of different switches for these net-
works. In case of network switches, the path of the packet from input to output is ar-
bitrary as communication can exist between any processing elements. Therefore the
knowledge of the application domain cannot be exploited to customize it further. In
case of networks also, other metrics like bandwidth, latency, are important and hence
the optimizations are different.

Other related work exists in the area of data shuffle networks for ASICs. Work like
[17,18] and [19], which customize different networks for performing specific appli-
cations, like FFT butterflies, cryptographic algorithms etc. [20] customize the shuffle
network for linear convolution. They are too specific to be used in a programmable pro-
cessor and none of them have focused on power or energy consumption. To the best of

1 In our experiments using 130nm technology, we observe that roughly 80% of the crossbar
dynamic power consumption is due to inter-cell interconnect.

www.manaraa.com

A Customized Cross-Bar for Data-Shuffling in Domain-Specific SIMD Processors 59

our knowledge, there is no work which explores the energy efficiency of shuffle net-
works for SIMD embedded systems. The crossbar is picked over other shuffle networks
(like Benes, Banyan etc.) as it can perform all kinds of shuffle operations. Also the data
routing from inputs to outputs is straightforward which eases the control word (or MUX
selection) generation, design verification, and design upgrades 2.

Table 1. Different Shuffle Families for a 64-bit Datapath and 8-bit Sub-word Configuration that
occur in Embedded Systems. ‘;’ denotes the end of one shuffle operation. ‘|’ denotes the end of
one output in case of a two outputs family. ‘-’ denotes a don’t care.

Family Name Occurs in Domain Description Shuffle Operations

64 m8 O1 F FFT Wireless FFT Butterflies a0b0a2b2 a4b4a6b6; a1b1a3b3 a5b5a7b7

a0a1b0b1 a4a5b4b5; a2a3b2b3 a6a7b6b7

a0a1b0b1 a2a3b2b3; a4a5b4b5 a6a7b6b7

a0a1a2a3 b0b1b2b3; a4a5a6a7 b4b5b6b7

64 m8 O1 F GSM Wireless GSM Decode a0a2a4a6 b0b2b4b6; a1a3a5a7 b1b3b5b7

(Viterbi) a0a1a0a1 b0b1b0b1; a1a0a1a0 b1b0b1b0

a2a3a2a3 b2b3b2b3; a3a2a3a2 b3b2b3b2

a4a5a4a5 b4b5b4b5; a5a4a5a4 b5b4b5b4

a6a7a6a7 b6b7b6b7; a7a6a7a6 b7b6b7b6

64 m8 O1 F Broadcast Multimedia Broadcast a0a0a0a0 a0a0a0a0; a1a1a1a1 a1a1a1a1

for masking a2a2a2a2 a2a2a2a2; a3a3a3a3 a3a3a3a3

a4a4a4a4 a4a4a4a4; a5a5a5a5 a5a5a5a5

a6a6a6a6 a6a6a6a6; a7a7a7a7 a7a7a7a7

64 m8 O1 F DCT Multimedia DCT a0b0a1b1 a2b2a3b3; a4b4a5b5 a6b6a7b7

a0a1b0b1 a2a3b2b3; a4a5b4b5 a6a7b6b7

64 m8 O1 F Interleave Multimedia Interleaving two inputs a0b0a1b1 a2b2a3b3; a1b1a2b2 a3b3a4b4

and Wireless a2b2a3b3 a4b4a5b5; a3b3a4b4 a5b5a6b6

a4b4a5b5 a6b6a7b7;

64 m8 O1 F Filter Multimedia Filtering, Correlators, a1a2a3a4 a5a6a7b0; a2a3a4a5 a6a7b0b1

and Wireless Cross-correlator a3a4a5a6 a7b0b1b2; a4a5a6a7 b0b1b2b3

a5a6a7b0 b1b2b3b4; a6a7b0b1 b2b3b4b5

a7b0b1b2 b3b4b5b6;

64 m8 O2 F FFT Wireless Two adjacent a0b0a2b2 a4b4a6b6 | a1b1a3b3 a5b5a7b7

FFT butterflies a0a1b0b1 a4a5b4b4 | a2a3b2b3 a6a7b6b7

a0a1b0b1 a2a3b2b3 | a4a5b4b5 a6a7b6b7

a0a1a2a3 b0b1b2b3 | a4a5a6a7 b4b5b6b7

3 Shuffle Families

A shuffle operation takes two input words and produces one or two outputs with the re-
quired composition of input sub-words, which is represented by the control or selection
lines. The choice of two outputs has both advantages and disadvantages on the proces-
sor architecture. The usage of two output based shuffle unit implies that lower number

2 The instructions and their encoding remain the same, even when the shuffler specification (in
terms of set specific shuffle operations to be implemented) changes during the design process,
as long as the encoding of MUX selection lines remains unchanged in the customization.

www.manaraa.com

60 P. Raghavan et al.

of instructions are required for performing the shuffles required for an application, but
at the cost of increased control overhead. The two output shuffle would also require
that shuffler uses two ports of the register file to write back the results. In this paper we
present both a single output shuffler as well as two output based shufflers. But furthur
details on the implications of using one or two output based shuffler unit on the full
system is beyond the scope of this paper. The required shuffle operations vary across
application kernels, sub-word sizes, and datapath sizes. To illustrate the different shuffle
operations, we first introduce a set of definitions:

– Shuffle Operation: For a given set of sub-word organized inputs, a particular output
sub-word organization.

– Family: A set of closely related shuffle operations that are used in an application
kernel for given sub-word and datapath sizes

– Datapath/Word size: The total number of bits the datapath operates on at a given
time.

– Sub-word Size: The size of an atomic data element e.g 8-bit and 16-bit.

The different families use the following naming convention: (Datapath Size) m(Sub-
word Size) O(# of Outputs) F Type. For example 128 m8 O2 F FFT is a collection of
shuffle operations required by an “FFT” kernel operating on 8-bit size data elements
and implemented on a datapath of size 128-bit.

3.1 Families of Shuffle Operations

1. FFT: The FFT family includes all the butterfly shuffle operations that are needed
for performing an FFT.

2. Interleave: The Interleave family includes the shuffle operations required for inter-
leaving the two inputs words in different ways.

3. Filter: The Filter family includes the shuffle operations required to perform various
filter operations, correlators and cross-correlators.

4. Broadcast: The Broadcast family includes the shuffle operations required for broad-
casting a single sub-word into all the sub-word locations.

5. GSM: The GSM family includes the shuffle operations required for the different
operations during the Viterbi based GSM decoding.

6. DCT: The DCT family includes the shuffle operations required for performing a
two-dimensional DCT operation.

Table 1 shows the shuffle operations required by the aforementioned application ker-
nels operating on 8-bit sub-words and implemented on a 64-bit datapath. The table
also indicates the domain in which these shuffle operations occur. It is assumed that
the two inputs to the shuffler are two words a0a1a2a3a4a5a6a7 and b0b1b2b3b4b5b6b7
respectively, where each of these a0 to b7 are sub-words of size 8-bit. Similarly the oper-
ations that correspond to other datapath sizes and sub-word modes can be derived. The
two-output (O2) shuffle operations are similar to the one-output (O1) shuffle operations
except that they perform two consecutive permutations that are needed by the algorithm
simultaneously. For example in case of the FFT, two butterflies that are needed in the
same stage are done together. As the shuffle operation for two-output operation can be

www.manaraa.com

A Customized Cross-Bar for Data-Shuffling in Domain-Specific SIMD Processors 61

obtained by concatenating two adjacent shuffle operations of one output operation, only
one example is shown in the table.

4 Crossbar Customization

Figure 1 shows a typical full-crossbar implementation, where all the inputs are con-
nected to all the outputs. Used in a 32-bit datapath, it can perform all varieties of one-
output shuffle operations with both 8-bit and 16-bit sub-words. The hardware required
to implement this is four 8-bit 8:1 multiplexers (MUXes) and the interconnections from
the different sub-word inputs to the MUXes. It is clear that this is extremely flexible,
but requires a large amount of interconnect. Therefore the power consumption of this
full-crossbar implementation is extremely high3.

8−bit

a0 a1 a3 b1b0 b2 b3

32−bit

Input Word 2Input Word 1

Output Word

a2

Fig. 1. Full Crossbar with two inputs and one output

If a shuffler is needed that can implement just those shuffle operations represented by
the family 32 m8 O1 F FFT, which are shown in Table 2. From the table it is evident
that in such a design not all inputs are required to be routed to each of the outputs.
E.g., first sub-word output MUX requires inputs a0, a1, and a2 only. Figure 2 shows the
customized crossbar which can implement the shuffle operations of Table 2. Thus, given
a set of shuffle operations/families that is required, corresponding customized crossbar
can be instantiated by removing the unused input connections to each of the output
muxes. This reduces both the MUX and the interconnect complexity. We still retain
the encoding of MUX selection signals of the crossbar for design simplicity reasons.
It should be noted that further energy savings can be achieved by choosing optimal
encoding for selection lines (potentially different encoding across MUXes), but it is not
explored in this work.

3 In our experiments we observed that a shuffle operation on this implementation consumes
nearly the same amount of dynamic energy as that of a 32-bit add operation.

www.manaraa.com

62 P. Raghavan et al.

Table 2. Different Shuffle Operations for the 32 m8 O1 F FFT family assuming the input words
are a0a1a2a3 and b0b1b2b3

Family Name Patterns

32 8 O1 F FFT a0b0a2b2
a1b1a3b3
a0a1b0b1
a2a3b2b3

8−bit

a0 a1 a2 a3 b1b0 b2 b3

32−bit

Input Word 1 Input Word 2

Output Word

Fig. 2. Crossbar with two 32-bit inputs and one output customized for the family
32 m8 O1 F FFT

Another opportunity for optimization is in the implementation of broadcast-based
shuffle operations. Since broadcast operations use only the first input, we propose that
both inputs ai and bi are identical. This implies that implementing broadcast on a shuf-
fler that implements other families will require much less extra connections. E.g., if the
two inputs are not forced to be identical, implementing broadcast in the design shown
in Figure 2 requires all ais to be connected to all output MUXes and hence require 1, 3,
2, 4 extra connections to the output MUXes from left to right respectively. If we enforce
that both the inputs are identical, to implement broadcast on the same design requires
only 1, 2, 1, 1 extra connections to the MUXes.

It can be inferred that the more families a shuffler needs to implement, the larger the
interconnect and MUX overhead are and the larger the power consumption will be. On
the other hand, if a given customized shuffler only needs to implement a few families,
less flexibility is needed and hence it will be less suitable to be used in a processor.
To provide more insight on this trade-off, Figure 3 depicts the the average number of
inputs to output MUXes in various implementations of customized crossbars for 64-bit
datapath. O1 and O2 indicate the number of outputs of the shuffler. mX indicates the

www.manaraa.com

A Customized Cross-Bar for Data-Shuffling in Domain-Specific SIMD Processors 63

sub-word sizes that the shuffler can handle, namely 8-bit (m8), 16-bit (m16), and both
8-bit & 16-bit (mB). Each bar corresponds to one customized shuffler which can imple-
ment the indicated shuffle operation families - namely:

– both the filter and interleave families (Filter + Interleave)
– all families discussed in Section 3 and that belong to the wireless domain (WL)
– all multimedia families except broadcast (MM w/o BC)
– all multimedia families including broadcast but not applying aforementioned opti-

mization (MM w/ unopt BC), i.e., broadcast operations are implemented as shown
in Table 1

– all multimedia families with optimized broadcast implementation (MM w/ opt BC)
– both multimedia and wireless families and with optimized broadcast (MM+WL)

The figure also shows the number of MUX inputs of a full crossbar. It is clear from
the figure that a customized shuffler which offers the flexibility required in embedded
applications has a significantly reduced complexity compared to a full crossbar. The
benefits of the proposed optimization for broadcast implementation are also explicit
from the figure. For the rest of the paper the only the optimized version of the broadcast
operation is taken for the multimedia domain.

5 Results

In this section we present the experimental setup and analyze the different crossbar
customizations and the effect on power and flexibility.

5.1 Experimental Setup

The synthesis and power estimation flow shown in Figure 4 is used to study the bene-
fits of the customized shufflers. Different shufflers are first coded in behavioral VHDL
and implemented using Synopsys Physical Compiler [21] and a UMC130nm stan-
dard cell library. The post-synthesis gate-level netlist, including parasitic delays pro-
vided by Physical Compile, is used for simulation in ModelSim [22] to obtain the
signal activity of the design. This activity information (in SAIF format) is then back-
annotated in Physical Compiler/Power Compiler to estimate the average power con-
sumption of the custom shuffler for the shuffle operations that the design is customized
for.

To perform the exploration, we use datapath sizes of 32-bit, 64-bit and 128-bit and
sub-word modes of 8-bit (m8), 16-bit (m16) and both 8-bit and 16-bit (mB). These
datapath sizes and sub-word modes are chosen as they are quite representative of most
embedded system processors and data-types [5]. All permutations and combinations of
these sub-word sizes and datapath sizes are explored.

5.2 Results and Analysis

To customize the crossbar based shuffler, all the shuffle operations required for one
application domain (wireless or multimedia) are used to make one architecture instead

www.manaraa.com

64 P. Raghavan et al.

0

2

4

6

8

10

12

14

16

18

O1_m8 O1_m16 O1_mB O2_m8 O2_m16 O2_mB Full Xbar

st
u

p
ni

X
U

M
f

o
re

b
m

u
n

e
garev

A

Any Filter + Interleave WL MM w/o BC MM w/ unopt BC MM w/ opt BC MM+WL

Fig. 3. Reduction in the number of MUX inputs for crossbars (for 64-bit datapath) customized
for different sets of families

of making one architecture for every family. To observe the effect of added flexibility on
the power consumption of the shuffler, we use another architecture which supports both
wireless and multimedia shuffle families (MM+WL). Also shufflers are constructed
such that they supports the following sub-word modes: only 8-bit sub-word, only 16-bit
sub-word, both 8 and 16-bit sub-word modes. To see the effect of the complexity of the
design we experiment with different datapath sizes.

Figure 5, 6 and 7 show the power consumption of a 32-bit4, 64-bit and 128-bit shuf-
fler datapath respectively, with architectures that generate both one and two outputs.
Architectures based on sub-word modes 8-bit, 16-bit and both 8-bit and 16-bit based
are also compared. All the power numbers are normalized w.r.t a two outputs full cross-
bar of corresponding datapath size. The Full X bar used as the baseline can handle both
8-bit as well as 16-bit sub-word sizes. The figures also show the comparison of the full
crossbar (Full X bar) with respect to a customized crossbar for the multimedia (MM),
wireless (WL) and both multimedia and wireless (MM+WL) domains. For the power
estimates shown in Figures 5, 6 and 7, synthesis is performed for a 200MHz5 frequency
target. It should be noted that each bar corresponds to different custom shuffler design
as indicated by the labels.

4 Note that in case of the 32-bit datapath, only sub-word mode of 8 is considered. Using 16-bit
sub-word mode on a 32-bit datapath give only 8 possible shuffle operations and which cannot
be categorized into the above mentioned families cleanly. Therefore modes m16 and mB are
dropped.

5 All the presented designs are synthesized at various frequencies (100MHz, 200MHz, 333
MHz, 400MHz and 500MHz). It is observed that the presented trends are consistent across
the frequencies.

www.manaraa.com

A Customized Cross-Bar for Data-Shuffling in Domain-Specific SIMD Processors 65

VHDL Testbench

ModelSim
Gate−level Simulation

(SAIF file)

Activity annotated Netlist

Physical Compiler/
Power Compiler

Energy Estimate

VHDL Description of
Shuffle Network UMC 130nm

Technology
Libraries

Gate Level
VHDL Netlist

(Layout)
Physical Design

Area Estimate

Timing Constraint

Activity Information

Snopysys Physical
Compiler

Application

Patterns
Generate Shuffle

Fig. 4. Tool Flow Used for Assessing Power Efficiency of Custom Shufflers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m8_O1 m8_O2

re
w

o
P

dez ila
m r

o
N

Full X Bar M WL M+WL

Fig. 5. Power Consumption of the 32 bit crossbar switch over all the different families and sub-
word modes

Figure 6 shows that the 16-bit sub-word (m16) architecture is more energy efficient
compared to the 8-bit sub-word architecture (m8) as the amount of routing and MUXing
is lower. The overhead of the architecture with the flexibility of both 8-bit and 16-bit
sub-words (mB) is quite low, compared to the 8-bit sub-word architecture.

www.manaraa.com

66 P. Raghavan et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m8_O1 m16_O1 mB_O1 m8_O2 m16_O2 mB_O2

e
w

o
P

dezila
mr

o
N

Full X Bar M WL M+WL

r

Fig. 6. Power Consumption of the 64 bit crossbar switch over all the different families and sub-
word modes

The full crossbar with two outputs (O2) is more than two times more expensive than
the one output (O1) based architectures, whereas two outputs crossbars, customized
to the wireless domain (WL) and multimedia domain (MM) and both multimedia and
wireless (MM+WL), are less expensive than two times their one output counterpart.
Therefore, in customized crossbars the two outputs (O2) based architectures are more
energy efficient (energy consumption/shuffle operation) compared to the one output
(O1) based architecture.

It can also be inferred from Figure 6 that the power consumption of the crossbar
customized for wireless (WL) is more than that of the multimedia (MM). This is because
of the fact that Viterbi (F GSM) requires a substantial amount of flexibility and therefore
consumes more power. Due to this extra flexibility, the wireless based crossbar (WL) is
not much more expensive than crossbar customized for both wireless and multimedia
(MM+WL). This is due to reasons explained in Section 4.

Another observation that can be made from Figure 6 is that in case of m16 O2 ar-
chitecture, the gains due to customization are quite high (about 75%). These gains are
due to the fact that in this architecture there are both gains of the 16-bit sub-word archi-
tecture as well as due to the two outputs based gains. The above mentioned trends are
valid in case of the 32-bit, 64-bit and the 128-bit shufflers.

Comparing Figure 6 and 7 it can be seen that the gains of the 128-bit based cus-
tomized crossbar over the full crossbar are lower than those of the 64-bit case. Although
increased shuffle operation complexity could be one plausible reason, analysis has re-
vealed that relative (to the full crossbar) the decrease in average number of MUX in-
puts for 128-bit case is of the same order for 64-bit and thus ruling out the possibility
of increased shuffle operation complexity for reduced gain from customization. Further
investigation revealed that the smaller gain is due to poor synthesis optimizations on
the flat behavioral description of a large design6. We also observed that the synthesizer

6 By large designs we mean a wider input bitwidth.

www.manaraa.com

A Customized Cross-Bar for Data-Shuffling in Domain-Specific SIMD Processors 67

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m8_O1 m16_O1 mB_O1 m8_O2 m16_O2 mB_O2

re
w

o
P

dezila
mr

o
N

Full X Bar M WL M+WL

Fig. 7. Power Consumption of the 128 bit crossbar switch over all the different families and
sub-word modes

is unable to fully exploit the don’t care conditions for unused MUX selection lines on
some (larger) designs, which means that the synthesized design still has some redundant
logic. This is evident from the cases where custom shuffler that can implement MM+WL
families consume less power than shuffler that can only implement WL families.

6 Conclusions

In this paper we presented the different shuffle operations that occur in the embedded
systems domain and classified them into different families. The crossbar based SIMD
shuffler was then customized to obtain domain specific instantiations of a shuffler which
was shown to be power efficient compared to a conventional full-crossbar based imple-
mentation. A trade-off space between flexibility and energy efficiency of the shuffler
was illustrated. Various datapath sizes as well as sub-word modes were also explored.
It was shown that by customizing the crossbar, energy savings of up to 75% could be
achieved. We are exploring the feasibility and benefits of using other non-crossbar based
networks (such as Banyan, Benes, etc.) to implement the shuffle operations discussed
in this paper.

References

1. Ruchira Sasanka. Energy Efficient Support for All levels of Parallelism for Complex Media
Applications. PhD thesis, University of Illinois at Urbana-Champaign, June 2005.

2. Hyunseok Lee, Yuan Lin, Yoav Harel, Mark Woh, Scott Mahlke, Trevor Mudge, and Krisz-
tian Flautner. Software defined radio - a high performance embedded challenge. In
Proc. 2005 Intl. Conference on High Performance Embedded Architectures and Compilers
(HiPEAC), November 2005.

3. IBM, http://www.research.ibm.com/cell/. The Cell Microprocessor, 2005.
4. K. Van Berkel, F. Heinle, P. Meuwissen, K. Moerman, and M. Weiss. Vector processing as

an enabler for software-defined radio in handsets from 3G+WLAN onwards. In Proc. of
Software Defined Radio Technical Conference, pages 125–130, November 2004.

www.manaraa.com

68 P. Raghavan et al.

5. Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner.
SODA: A low-power architecture for software radio. In Proc of ISCA, 2006.

6. Freescale Semiconductor, http://www.freescale.com/files/32bit/doc/
ref manual/MPC7400UM.pdf?srch=1. Altivec Velocity Engine.

7. Intel, http://www.intel.com/support/processors/
sb/cs-001650.htm. Streaming SIMD Extension 2 (SSE2).

8. Freescle Semiconductor, http://www.freescale.com/webapp/sps/site/
overview.jsp?nodeId=0162468rH3bTdGmKqW5Nf2. Altivec Engine Benchmarks, 2006.

9. Hugo DeMan. Ambient intelligence: Giga-scale dreams and nano-scale realities. In Proc of
ISSCC, Keynote Speech, February 2005.

10. Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks: an Engineer-
ing Approach. IEEE Computer Society, 1997.

11. Nabanita Das, B.B. Bhattacharya, R. Menon, and S.L. Bezrukov. Permutation admissibility
in shuffle-exchange networks with arbitrary number of stages. In Intl Conference on High
Performance Computing (HIPC), pages 270–276, 1998.

12. H. Cam and J.A.B. Fortes. Rearrangeability of shuffle-exchange networks. In Proc. of Fron-
tiers of Massively Parallel Computation, pages 303 – 314, 1990.

13. I.D. Scherson, P.F. Corbett, and T. Lang. An analytical characterization of generalized
shuffle-exchange networks. In IEEE Proc of Computer and Communication Societies (IN-
FOCOM), pages 409 – 414, 1990.

14. Krishnana Padmanabhan. Design and analysis of even-sized binary shuffle-exchange net-
works for multiprocessors. In IEEE Transactions on Parallel and Distributed Systems, pages
385–397, 1991.

15. S. Diana Smith and H.J. Siegel. An emulator network for SIMD machine interconnect net-
works. In Computers, pages 232–241, 1979.

16. Krishnan Padmanabhan. Cube structures for multiprocessors. Commun. ACM, 33(1):43–52,
1990.

17. J.P.McGregor and R.B. Lee. Architecture techniques for acclerating subword permutations
with repetitions. In Trans. on VLSI, pages 325–335, 2003.

18. X. Yang, M. Vachharajani, and R.B. Lee. Fast subword permutation instructions based on
butterfly networks. In Proc of SPIE, Media Processor, pages 80–86, 2000.

19. J.P. McGregor and R.B. Lee. Architectural enhancements for fast subword permutations with
repetitions in cryptographic applications. In Proc of ICCD, 2001.

20. A. Elnaggar, M. Aboelaze, and A. Al-Naamany. A modified shuffle-free architecture for
linear convolution. In Trans on Circuits and Systems II, pages 862–866, 2001.

21. Synopsys, Inc. Physical Compiler User Guide, 2006.
22. Mentor Graphics. ModelSim SE User’s Manual, 2006.

www.manaraa.com

Customized Placement for High Performance
Embedded Processor Caches

Subramanian Ramaswamy and Sudhakar Yalamanchili

Center for Research on Embedded Systems and Technology
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

ramaswamy@gatech.edu,sudha@ece.gatech.edu

Abstract. In this paper, we propose the use of compiler controlled customized
placement policies for embedded processor data caches. Profile driven customized
placement improves the sharing of cache resources across memory lines thereby
reducing conflict misses and lowering the average memory access time (AMAT)
and consequently execution time. Alternatively, customized placement policies
can be used to reduce the cache size and associativity for a fixed AMAT with
an attendant reduction in power and area. These advantages are achieved with a
small increase in complexity of the address translation in indexing the cache. The
consequent increase in critical path length is offset by lowered miss rates. Sim-
ulation experiments with embedded benchmark kernels show that caches with
customized placement provide miss rates comparable to traditional caches with
larger sizes and higher associativities.

1 Introduction

As processor and memory speeds continue to diverge, the memory hierarchy remains a
critical component of modern embedded systems and the focus of significant optimiza-
tion efforts [1]. With the adoption of larger and faster caches, cache memories have be-
come major consumers of area and power, even in the embedded processor domain [2,3]
where area and power constraints make large caches particularly undesirable. For ex-
ample, the Intel IXP2400 network processor does not employ a cache, the ARM720T
processor has an 8KB unified L1 cache, the TI TMS320C6414 has a 16KB data cache,
NEC VR4121 has a 8KB data cache. However, at the same time, the cost of off-chip
accesses is significant (e.g., the DRAM access time is approximately 300 cycles for the
IXP [4]). This has led to the development of many techniques [5,6,7,8,9] for compiler
controlled on-chip scratch-pad memory management as a low power, small footprint al-
ternative to hardware managed caches. However, scratch-pad memories require explicit
control of all data movement to/from the scratch-pad in the spirit of overlays. However,
like overlays we would rather have the advantages of automated techniques if they are
feasible at an acceptable cost. This paper proposes such a class of techniques - one that
effectively combines static knowledge of memory usage when available with run-time
simplicity of caching.

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 69–82, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

70 S. Ramaswamy and S. Yalamanchili

Consider the management of data transfers between other levels of the memory hier-
archy. Register allocation is a static application-centric technique to effectively manage
memory bandwidth demand to the register file. The page table/TLB contents reflect
customized page placement to optimize memory usage and the bandwidth demand to
secondary storage. However, caches still use a fixed hardware mapping between mem-
ory and the cache hierarchy primarily due to the fact that caches lay on the load/store
instruction execution’s critical path. Conventional cache placement polices map mem-
ory line L to cache set L mod S where there are S sets. Caches are indexed with the
log2 S address bits and additional lower order bits are used to access the target word in
a line. Historically, compiler-based and hardware-based memory system optimizations
have worked with this fixed placement constraint.

In this paper we argue for a simple, yet powerful change in managing caches - soft-
ware synthesized placement. The mapping, or placement of main memory lines in the
cache is derived from an analysis of application’s memory reference profile. Many em-
bedded applications are amenable to analysis where the memory behavior of application
phases can be captured and characterized. This paper describes an approach to the re-
duction of conflict misses for these phases via better sharing of cache resources across
the memory lines. The consequences of the significant reductions in the miss rate is a
smaller application footprint in the cache. This can be leveraged to reduce the cache
size with an attendant reduction in power, or alternatively improve the average memory
access time (AMAT) and thereby reduce execution time. This advantage is achieved
with a small increase in area to accommodate the increase in complexity of address
translation, and potentially a slight drop in maximum processor clock speed that can
be recovered via decreased miss rates. The implementation proposed here can be ex-
tended to include run-time optimizations that change placement policies as a function
of program region and dynamic behavior to improve the overall miss rate. The syn-
thesized placement is naturally performed by the compiler, but can also be under the
control of dynamic optimizers to improve existing optimizations or explore new ones
which were hitherto infeasible due to the fixed cache placement constraint in hardware
caches.

The following section describes the overall model and the broader implications of
software customized placement policies in embedded processor caches. Section 4 de-
scribes the algorithmic formulation and solution for the computation of a placement
function followed by a description of the address translation mechanism. Section 5
presents the results of an analysis of the design space for a set of kernel benchmarks.
The cache employing customized placement consistently outperformed traditional
caches with AMAT as the metric, with little impact to area and energy costs. The
paper concludes with a description of the relationship of this work with prior and
ongoing efforts and concluding remarks that cover our ongoing efforts and
extensions.

2 Caches with Customized Placement

Figure 1 conceptualizes the placement policy used in traditional cache architectures. A
memory line at address L is placed in, or mapped to, the cache set L mod S where

www.manaraa.com

Customized Placement for High Performance Embedded Processor Caches 71

the cache has S sets. The set of memory lines mapped to a cache set is referred to
as a conflict set and this placement policy will be referred to as modulo placement.
Associativity has a major impact on the number of conflict misses caused by accesses to
lines in a conflict set. Increasing associativity reduces conflict misses at the expense of
increased hit time, increased energy in tag matching logic, and reduction in the number
of sets (for a fixed size cache). The proposed customized placement policy redefines the
mapping from memory lines to sets.

In the most general case, a memory line can be mapped to any set in the cache.
The difficulty with this approach lies in the problem size (mapping millions of lines)
and the complexity of resulting address decoding. Therefore we propose a more struc-
tured approach as follows. Let us represent the total number of lines in the cache by
Cl and define a partition, Pi as the set of memory lines where memory line Lk ∈ Pi

if Lk mod Cl = i. A traditional k-way set associative cache with S sets will define S
conflict sets. The set of lines in each conflict set will be the union of k partitions. In a
direct-mapped cache, partitions and conflict sets are equivalent. Figure 2 illustrates the
concepts of partitions and conflict sets. The optimization problem can now be stated as
follows: Given a memory reference profile, synthesize an assignment of partitions to
conflict sets to minimize the number of conflict misses. Figure 3 illustrates the concept
of customized placement.

Fig. 1. Traditional cache placement

3 Program Phases and Interference Potential

Program execution evolves through phases [10] wherein each phase is characterized
by a working set of memory references. Within a program phase, memory reference
behavior exhibits spatial and temporal locality around a set of memory locations. The
utilization of each partition in a program phase is measured and used to capture the
potential conflicts between references to two partitions using the concept of interference
potential.

www.manaraa.com

72 S. Ramaswamy and S. Yalamanchili

Fig. 2. Partitions and conflict sets in a traditional cache

A memory reference trace is partitioned into contiguous segments of references
called windows where each window represents a program execution phase. For win-
dow w the number of references to partition i is defined as r[w][i]. In this study, the
interference potential between partitions i and j in window w is min(r[w][i], r[w][j])
- representative of the average increase in the number of conflict misses in window w
if partitions i and j are mapped to the same cache set (the maximum increase in the
number of conflict misses is twice the interference potential). The interference poten-
tial between two partitions is the sum of the interference potential between the par-
titions across all windows. As associativity increases, the interference potential is an
increasingly pessimistic measure of conflict misses as the merged partitions will share
an increasing number of lines in the target set. As described in Section 4 customized
placement will create new conflict sets by composing partitions based on their interfer-
ence potential and assign these conflict sets to cache sets.

3.1 Architecture and Programming Model

Customized placement is conceived of as a compiler or software controlled optimization
that is selectively invoked for specific program phases such as nested loops and func-
tions, or even entire programs that have memory reference behavior that is amenable
to analysis and characterization. The implementation is composed of a base conven-
tional cache that selectively uses a programmable address translation mechanism for
those program phases that employ customized placement as shown in Figure 6. Cus-
tomized placement is invoked under compiler or software control for individual pro-
gram regions or across programs in a thread as illustrated in Figures 4 and 5. In our
analysis no special support is provided for multiple threads - each thread may indi-
vidually customize program regions, but otherwise share the cache as in conventional
embedded processors.

www.manaraa.com

Customized Placement for High Performance Embedded Processor Caches 73

Fig. 3. Customized cache placement

1: placement(kernel1)
2: kernel1();
3: placement(kernel2)
4: kernel2();

Fig. 4. Example 1

1: placement(kernel1 − phase0)
2: . . . {kernel1 execution begins}
3: placement(kernel1 − phase1)
4: . . . {kernel1 execution continues}

Fig. 5. Example 2

4 Customized Placement

The placement algorithm computed over a trace and the accompanying address transla-
tion unit are described in the following sections.

4.1 Placement Algorithm

Algorithm 1 captures the pseudo-code for the computation of customized placement
for a set-associative cache. For a k-way set-associative cache with Cs sets, there are
P = k∗Cs partitions. These P partitions are merged to form Cs sets of partitions, which
form the conflict sets for the cache. The primary inputs to the algorithm are the reference
counts for each partition in each profile window (r[P][W], where W represents the
total number of windows, interference potential between partitions (ip[P][P]), and, the
number of sets (Cs).

A greedy algorithm iteratively traverses the interference potential matrix to select the
partition pair with the minimum interference potential (line 5) and merges them to form
a new conflict set (line 6) and updates the reference counts (line 7) and the interference
potential matrix (line 8) to reflect the removal of one partition. This process is iterated
P − Cs times, to ensure that the resulting number of sets of partitions (the new conflict
sets) is equal to the number of cache sets. A partition can be allocated a maximum of
one cache set, and multiple partitions may share a single cache set. Finally, the mapping

www.manaraa.com

74 S. Ramaswamy and S. Yalamanchili

is updated so that the partitions map to actual cache set indexes (line 10). The output is
the conflict set membership for all partitions (map[P]).

Direct-mapped caches are a special case where the number of partitions is equal
to the number of cache sets (associativity = 1) and each set is one cache line. Thus
partitions cannot be merged without leaving some cache lines unassigned and therefore
unused. Thus we treat direct mapped caches separately as shown in Algorithm 2. There
are two stages to the algorithm - an allocation stage where partitions are allocated one
or more cache lines based on their access demand (lines 3–10), followed by merging
partition pairs based on interference potential and updating the reference counts and the
interference potential matrix (lines 12–17). The allocation of cache lines is restricted to
powers of two to reduce address translation complexity. The mapping of partitions to
conflict sets (cache lines) is updated such that all mappings correspond to actual cache
line indexes (line 18). The algorithm returns an assignment of partitions to conflict sets
(cache lines), and an allocation count - the number of cache lines allocated to each
partition.

4.2 Address Translation

This flexibility in placement is accompanied by a relatively complex translation of 32-
bit physical addresses to access the cache set, tag, and word. In a conventional modulo
placement, log2 Cs bits of the address, the set index, are used to determine the set con-
taining the referenced memory line. With custom placement a partition may be mapped
to any of the sets in the cache, and therefore requires the re-mapping of the set index
bits. This remapping is implemented using a look-up table as shown in Figure 6. There
is no constraint on how conflict sets may be composed of partitions and thus two lines
in memory with the same tag may share the same cache set. Therefore the conven-
tional tag is extended with the original set index to ensure that all lines can be correctly
differentiated in a cache set with a unique tag.

Algorithm 1. Set-associative cache placement

Input: r[P][W], ip[P][P], Cs

Output: map[P]

1: for i = 0 to P − 1 do
2: map[i] = i {Initialize}
3: end for
4: for i = 1 to P − Cs do
5: find imin, jmin s.t. ip(imin, jmin) = min(ip[P][P])
6: map[jmin] = map[imin] {Merge imin, jmin}
7: update(r) {Update reference counts after merging}
8: update(ip) {Update ip[P][P] after merging}
9: end for

10: update(map[P]) {Update mappings to point to actual cache sets}
11: return map[P]

www.manaraa.com

Customized Placement for High Performance Embedded Processor Caches 75

Address decoding in a direct mapped cache is a bit more complex because each con-
flict set corresponds to a single partition and is traditionally allocated to a single cache
line. If partitions are coalesced based on interference potential to form new conflict
sets, and if we wish to use all cache lines, then at least one partition will have to be
allocated multiple cache lines. When this happens, the memory lines in a partition are
mapped to the allocated cache lines using modulo placement. In this paper we limit
the number of cache lines that can be allocated a to a single partition, to be 1, 2, or 4.
Address translation now operates as illustrated in Figure 7 and implemented as shown
in Figure 8.

Each entry in the lookup table is, again, indexed by the cache line index and the table
entry contains the address of the first cache line in the block of cache lines allocated
to the particular partition. When four lines are allocated to a partition, the lower order
two bits of the tag determine which of the four cache lines is the target location (hence
the addition operation). The mask operation (logical AND) helps enforce the correct
offset of 1, 2, 3, or 4 (corresponding 0, 1, or 2 lower order bits of the tag). Note the
maximum number of cache lines allocated to a partition can be 4. Hence, an additional
two bits per entry is required to be stored along with the base cache line address in

Algorithm 2. Direct-mapped cache placement

Input: r[P][W], ip[P][P], Cs

Output: map[P], alloc[P]

1: avg = (
P−1∑
i=0

W−1∑
j=0

r[i][j]) / P

2: partitions to merge = 0
3: for i = 0 to P − 1 do
4: map[i] = i{Initialize}
5: alloc[i] = 1{Initialize one cache line per partition}

6: p ref =
W−1∑
j=0

r[i][j]{Partition reference count}

7: if p ref > avg then
8: alloc[iter]=2�log2 val�{Allocate lines to partition in powers of two}
9: partitions to merge += alloc[i]

10: end if
11: end for
12: for iter = 1 to partitions to merge do
13: find imin, jmin s.t. ip(imin, jmin) = min(ip[P][P])
14: map[jmin] = map[imin] {Merge imin, jmin}
15: update(r) {Update reference counts after merging}
16: update(ip) {Update ip[P][P] after merging}
17: end for
18: update(map[P]) {Update mappings to point to actual cache sets}
19: return map[P], alloc[P]

www.manaraa.com

76 S. Ramaswamy and S. Yalamanchili

Bypass

Address Translation

IndexTag Offset

=? Mux

Hit/Miss

Tag Array Data Array

Data

Addr

Lookup
Table

t+i

i

t+i

i

t

New Tag

Fig. 6. Address decoding for set-associative caches (bypass path shown)

the lookup table. The direct-mapped configuration also possesses the bypass path (not
shown in figure). The lookup table can be implemented using fast SRAM, and loaded
using special instructions.

5 Performance Evaluation

The techniques described in this paper were evaluated by modifying the cachegrind [11]
simulator to support alternative placement functions. Cachegrind has a write-allocate
policy on write misses with LRU replacement in set-associative caches. The bench-
marks studied included a subset of kernels from the mibench [12] benchmark suite
including basicmath, cjpeg, djpeg, fft, inverse fft, susan, tiff2bw, tiff2rgba, tiffmedian,
tiffdither, patricia, ispell, and, ghostscript. The area, power and cache latency esti-
mates were generated using cacti [13] for 90nm technology. The placement function
was computed using this window size and applied for each benchmark kernel.

As mentioned previously, the analysis does not implement phase detection, but
rather, each phase (window) was chosen to be one million references. The window
chosen has to be sufficiently large such that interference potential is not tied too closely
to the profile (since any slight change in profile would affect performance), whereas
it has to be sufficiently small to ensure the interference information captured is useful
enough to drive miss rates down. The kernels had reference counts ranging from 40 mil-
lion to 100 million references, and a value of one million references was chosen as the
window size as a compromise between the conflicting arguments. A sensitivity analysis
of the relationship of customized placement performance to window sizes is part of our
ongoing investigation.

Figure 9 illustrates the AMAT (averaged over the mibench kernels) obtained for
various cache configurations, with a miss penalty of 200 cycles. In this case, no access

www.manaraa.com

Customized Placement for High Performance Embedded Processor Caches 77

P1
P0

P1
P0

Main Memory

Partitions

Partition 0 Start Addr bitsel

Lookup Table Entry

Start Addr

Contains the first cache line allocated to partition

Bit Selector Field (bitsel)

00 – One cache line allocated to partition

10 – Two cache lines allocated to partition

11 – Four cache lines allocated to partition

...t1t0

Tag Index Offset

de
te

rm
in

es
Bit selector
logic (AND) Adder

t1 t0 = 00

t 1
t 0

= 01

Example:

P0 lookup table entry is 0x55 11

Lines with t1t0 = 00 in P0 map to cache line 0x55
Lines with t1t0 = 01 in P0 map to cache line 0x56
Lines with t1t0 = 10 in P0 map to cache line 0x57
Lines with t1t0 = 11 in P0 map to cache line 0x58

Fig. 7. Address translation of direct-mapped caches - concept

IndexTag Offset

=? Mux

Hit/Miss

Tag Array Data Array

Data

Addr

Lookup
Table

t+i

i

t+i

i
Alloc

AND

t

2

ADD

New Tag

Fig. 8. Address decoding direct-mapped caches (bypass path not shown)

time penalty was assessed for the look-up table access. The AMAT using the CPC is
consistently better, and can be seen to offer the same effect as increasing associativity in
traditional caches. We conclude that the improved sharing of cache lines is responsible
for improved performance. This improved sharing comes at the expense of the addition
remapping but garners the effect of increased associativity.

www.manaraa.com

78 S. Ramaswamy and S. Yalamanchili

 2

 3

 4

 5

 6

 7

 8

 9

 10

4-way CPC4-way2-way CPC2-wayDM CPCDM

A
M

A
T

 (
av

er
ag

ed
)

in
 c

yc
le

s

Cache Configurations

4KB
8KB

16KB

Fig. 9. AMAT for various cache configurations

The latency penalty for customized placement is approximately 0.3 ns, over the base
latency of 0.6 ns for a direct-mapped 4KB cache and 0.8 ns for a 4-way 4KB cache,
The latency cost consists primarily of the decoding necessary for indexing the SRAM
based lookup table. The effect of the added latency decreases as the cache size increases
or the associativity increases. For the caches considered, the access latency including
the lookup stage is well within 1.2 ns corresponding to a clock of less than 750 MHz for
single cycle hit time - well within the scope of modern embedded processors. Therefore
analysis assumes single cycle hit times. Even if a penalty of half a cycle was applied
to the customized placement cache, it would still outperform traditional caches, as the
difference in AMAT between traditional caches and customized placement cache is
greater than one cycle for most configurations.

Figures 10 and 11 illustrate the area and energy costs for various cache configura-
tions. Figure 10 plots the area in mm2 for various cache configurations. The additional
area cost of the CPC is very low(2–5%) with the lookup table contributing to most of
the increase in area. Figure 11 plots the per access energy consumed (in nJ) by various
cache configurations. It is seen that associativity increases energy costs significantly,
whereas the increase due to the addition of customized placement (keeping associativ-
ity fixed) is again low (2–5%). Looking at the these results in conjunction with Figure 9,
the desirable design point is to use smaller caches with customized placement, or lower
associativity with customized placement to have miss rates comparable to larger caches
or caches with higher associativity. The result is significant energy savings.

Figure 12 illustrates the (interpolated) relationship between the AMAT provided and
the energy consumed by traditional and customized placement caches. For caches with
the same configuration (consuming approximately the same energy - CPC consumes
slightly higher energy than the modulo cache for the same configuration corresponding
to two nearby points in the x - axis), customized placement caches can provide signifi-
cantly lower AMAT (10–40%) compared to traditional placement caches. Alternatively,

www.manaraa.com

Customized Placement for High Performance Embedded Processor Caches 79

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

4-way CPC4-way2-way CPC2-wayDM CPCDM

A
re

a
(s

q.
 m

m
)

Cache Configurations

4KB
8KB

16KB

Fig. 10. Area costs of various cache configurations

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

4-way CPC4-way2-way CPC2-wayDM CPCDM

E
ne

rg
y

pe
r

ac
ce

ss
 (

nJ
)

Cache Configurations

4KB
8KB

16KB

Fig. 11. Energy costs of various cache configurations

if one were to design caches for a specific AMAT, customized placement offers consid-
erable energy savings (25% or more) over the traditional placement caches as caches
of much lower size and associativity may be chosen. The energy savings increase as
lower AMATs are desired - this is because using customized placement low AMATs
are realized with low associativity and cache sizes, whereas with traditional caches
energy hungry caches with higher associativity and sizes are required. This discussion

www.manaraa.com

80 S. Ramaswamy and S. Yalamanchili

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

A
M

A
T

 (
av

er
ag

ed
)

in
 c

yc
le

s

Energy per access (nJ)

Conventional Placement
Customized Placement

Fig. 12. Energy-AMAT curves compared for traditional and customized placement caches

did not considered the energy saved off-chip memory due to a lower number of misses
resulting in fewer requests to off-chip memory. Considering the decreased number of
off-chip requests would lead to higher energy savings than reported in this paper.

6 Related Work

Relevant previous approaches towards optimizing cache performance broadly falls into
four categories. The first category includes several techniques adopting compiler con-
trolled on-chip scratch pad memories [5,6,7,8,9] which were mentioned in Section 1. As
mentioned earlier, scratch-pad memories require explicit control of all data movement
between the scratch pad and the off-chip memory and this leads to an increase in code
size and software complexity. Techniques in the second category propose adapting the
application characteristics, such as data layout, such that its memory reference behavior
is a better match for a (fixed) cache design [14,15]. The third category includes designs
which are pseudo associative and which try to spread accesses evenly, including those
with innovations in indexing and hashing such as [16,17,18,19,20,21,22,23,24]. Finally,
the fourth category includes cache partitioning strategies to exploit reference locality in
data structures [25,26,27].

The hardware approaches generally seek to find better fixed placements than tra-
ditional modulo placement. Our technique offers flexible placement policies that can
be controlled by the programmer, and is optimized to the target application or ker-
nel. We seek to share the cache resources better among main memory lines targeted to
the specific application that is executing. This technique can also complement existing
compiler optimizations.

www.manaraa.com

Customized Placement for High Performance Embedded Processor Caches 81

7 Conclusion and Future Work

This work proposes software controlled and synthesized placement, whereby the map-
ping of a memory line to a cache set is customized to the application profile. This work
augments existing techniques used for miss rate reduction by relaxing the constraint
of fixed hardware placement. Our results indicate that customized placement produces
performance typically achieved with increased associativity or larger sized caches. This
behavior can be used to optimize embedded caches along the dimensions of cost (power,
area) and performance.

Apart from the run-time placement optimizations we are pursuing, these insights
can be exploited in several other ways. Data re-layout optimizations can be pursued
in conjunction with selecting the placement policy by the compiler. We are focused
on developing a framework for compiler-driven cache downsizing to optimize power
and AMAT across phases of application execution. A special case of cache downsizing
which maps memory lines to non-faulty cache lines is being extended into a design
framework for robust caches in deep sub-micron technologies [28].

References

1. McKee, S.A.: Reflections on the memory wall. In: Conf. Computing Frontiers. (2004)
2. Zhang, M., Asanovi, K.: Fine-grain CAM-tag cache resizing using miss tags. In: ISLPED.

(2002)
3. Hu, Z., Martonosi, M., Kaxiras, S.: Improving cache power efficiency with an asymmetric

set-associative cache. In: Workshop on Memory Performance Issues. (2001)
4. Intel Corporation: Intel IXP2800 Network Processor Hardware Reference Manual. (2002)
5. Banakar, R., Steinke, S., Lee, B.S., Balakrishnan, M., Marwedel, P.: Scratchpad memory:

design alternative for cache on-chip memory in embedded systems. In: CODES. (2002)
6. Steinke, S., Wehmeyer, L., Lee, B., Marwedel, P.: Assigning Program and Data Objects to

Scratchpad for Energy Reduction. In: DATE. (2002)
7. Panda, P.R., Dutt, N.D., Nicolau, A.: Efficient Utilization of Scratch-Pad Memory in Em-

bedded Processor Applications. In: EDTC ’97. (1997)
8. Miller, J.E., Agarwal, A.: Software-based instruction caching for embedded processors. In:

ASPLOS. (2006)
9. Udayakumaran, S., Dominguez, A., Barua, R.: Dynamic allocation for scratch-pad memory

using compile-time decisions. Trans. on Embedded Computing Sys. 5(2) (2006)
10. Sherwood, T., Varghese, G., Calder, B.: A pipelined memory architecture for high throughput

network processors. In: ISCA. (2003)
11. Nethercote, N., Seward, J.: Valgrind: A Program Supervision Framework. Electr. Notes

Theor. Comput. Sci. 89(2) (2003)
12. Guthaus, M., Ringenberg, J., Ernst, D., T. Austin, T.M., , Brown, R.: MiBench: A free, com-

mercially representative embedded benchmark suite. In: 4th IEEE International Workshop
on Workload Characteristics. (2001)

13. Tarjan, D., Thoziyoor, S., Jouppi, N.P.: CACTI 4.0: An Integrated Cache Timing, Power,and
Area Model (2006)

14. Rabbah, R.M., Palem, K.V.: Data remapping for design space optimization of embedded
memory systems. ACM Transactions in Embedded Computing Systems 2(2) (2003) 186–
218

15. Chilimbi, T.M., Hill, M.D., Larus, J.R.: Cache-Conscious Structure Layout. In: PLDI. (1999)

www.manaraa.com

82 S. Ramaswamy and S. Yalamanchili

16. Qureshi, M.K., Thompson, D., Patt, Y.N.: The V-Way Cache: Demand Based Associativity
via Global Replacement. In: ISCA. (2005)

17. Chiou, D., Jain, P., Rudolph, L., Devadas, S.: Application-specific memory management for
embedded systems using software-controlled caches. In: DAC. (2000)

18. Zhang, C.: Balanced cache: Reducing conflict misses of direct-mapped caches. In: ISCA.
(2006)

19. Hallnor, E.G., Reinhardt, S.K.: A fully associative software-managed cache design. In:
ISCA. (2000)

20. Peir, J.K., Lee, Y., Hsu, W.W.: Capturing dynamic memory reference behavior with adaptive
cache topology. In: ASPLOS. (1998)

21. Seznec, A.: A Case for Two-Way Skewed-Associative Caches. In: ISCA. (1993)
22. Calder, B., G, D., Emer, J.: Predictive sequential associative cache. In: HPCA. (1996)
23. Agarwal, A., Pudar, S.D.: Column-associative caches: A technique for reducing the miss rate

of direct-mapped caches. In: ISCA. (1993)
24. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers. In: ISCA. (1990)
25. Petrov, P., Orailoglu, A.: Towards effective embedded processors in codesigns: customizable

partitioned caches. In: CODES. (2001)
26. Ramaswamy, S., Sreeram, J., Yalamanchili, S., Palem, K.: Data Trace Cache: An Applica-

tion Specific Cache Architecture. In: Workshop on Memory Dealing with Performance and
Applications (MEDEA). (2005)

27. Dahlgren, F., Stenstrom, P.: On reconfigurable on-chip data caches. In: ISCA. (1991)
28. Ramaswamy, S., Yalamanchili, S.: Customizable Fault Tolerant Embedded Processor

Caches. In: ICCD. (2006)

www.manaraa.com

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 83 – 97, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Multiprocessor Cache for Massively Parallel SoC
Architectures

Jörg-Christian Niemann, Christian Liß, Mario Porrmann, and Ulrich Rückert

Heinz Nixdorf Institute, University of Paderborn, Germany
{niemann, liss, porrmann, rueckert}@hni.upb.de

Abstract. In this paper, we present an advanced multiprocessor cache
architecture for chip multiprocessors (CMPs). It is designed for the scalable
GigaNetIC CMP, which is based on massively parallel on-chip computing
clusters. Our write-through multiprocessor cache is configurable in respect to
the most relevant design options. It is supposed to be used in universal co-proc-
essors as well as in network processing units. For an early verification of the
software and an early exploration of various hardware configurations, we have
developed a SystemC-based simulation model for the complete chip multiproc-
essor. For detailed hardware-software co-verification, we use our FPGA-based
rapid prototyping system RAPTOR2000 to emulate our architecture with near-
ASIC performance. Finally, we demonstrate the performance gains for different
application scenarios enabled by the usage of our multiprocessor cache.

1 Introduction

Responding to the emerging performance demands on modern processor systems, we
have developed an architecture for single-chip multiprocessors (CMPs) that can be
deployed in network processing nodes and universal coprocessors, the GigaNetIC
architecture (cf. Fig. 1).

Following our architectural concept [1], the system on chip (SoC) may comprise a
multitude of processing elements (PEs), which are locally connected in clusters via
on-chip buses like Wishbone or AMBA AHB, and these clusters are globally inter-
connected by using a network on chip, the GigaNoC [2].

On cluster level, we focus on a shared memory approach with a shared memory
bus, which represents one potential bottleneck of our architecture. As we can connect
up to 8 PEs to one local bus, the congestion of the bus becomes evident. Another
problem is the growing gap between CPU performance and SDRAM memory per-
formance. One solution that trades off between high speed and low costs is the usage
of caches. By the usage of caches, the memory bus bottleneck can be widened thus
leading to an increase of system performance.

We have developed a multiprocessor cache, which suits the specific requirements
of our GigaNetIC architecture, and which is also usable for other multiprocessor ar-
chitectures due to its standardized AMBA interface and generic CPU interface, re-
spectively. We provide a MOESI-based multiprocessor cache coherency scheme as
well as many enhanced cache features (e. g., compiler initiated prefetching, run-time

www.manaraa.com

84 J.-C. Niemann et al.

partitioning of the data cache in cache coherent cache lines and private scratchpad
memory on cache line level, and early continuation) for raising the system per-
formance. Actually, the clock rate of the instantiated PEs does not exceed the capa-
bilities of the on-chip memories yet, but the problem of the congestion in accessing
the shared memory is tackled.

As the development of modern cache hardware consumes a considerable amount of
time, we provide a SystemC simulation model (SiMPLE [2]) of the GigaNetIC CMP
that also integrates the multiprocessor cache. This transaction-level-based model
allowed us to shorten the development process by doing hardware and software devel-
opment in parallel and therefore being able to debug new hardware configurations in
an early design phase. The coarse-grained SystemC model is finally modeled in a fine
grained RTL (Register Transfer Level) description in VHDL. The debugging can be
sped up by using a mixed-level simulation: VHDL models for system modules
already implemented and SystemC modules for the system modules still under devel-
opment. After completing the VHDL implementation it can be used for more accurate
performance measurements, debugging, verification and profiling of the software. We
use our FPGA-based rapid prototyping system RAPTOR2000 [4] for speeding up
these software-related tasks and for prototyping the CMP, which is the final step
before fabricating the CMP as an ASIC. Both, the SystemC model and the rapid
prototyping system allow us a fast verification of the system specification and an
early testing of finished parts of the VHDL description.

Fig. 1. System architecture based on massively parallel embedded processing clusters

In section 2, the GigaNetIC CMP is discussed in more detail. Section 3 gives an
overview over similar chip-multiprocessor caches. We describe the specific features
of our cache architecture in section 4. Section 5 presents analysis results in respect
to application-specific and implementation-specific performance, power and area

www.manaraa.com

 A Multiprocessor Cache for Massively Parallel SoC Architectures 85

requirements concerning standard cell libraries in CMOS technology as well as
FPGAs. We conclude this paper with section 6.

2 GigaNetIC Multiprocessor Architecture

The backbone of the GigaNetIC CMP architecture [5] (cf. Fig. 1) is the GigaNoC [2],
a hierarchical hybrid network on chip (NoC). It provides high scalability due to its
modularity and its regular interconnect scheme. Local on-chip buses are used to
connect small numbers of processing elements (PEs) [6][7] or peripherals. These
clusters are interconnected by switch boxes (SBs) on the higher level [8]. These IP
blocks transparently handle and terminate our on-chip communication protocol simi-
lar to [9]. The parallel and redundant structure of our switch box approach offers a
high potential for fault tolerance: in case of a failure of one or more components,
other parts can take over the respective operations. This can cause a significant in-
crease in production yield.

The interconnection between SBs can form arbitrary topologies, like meshes, tori
or butterfly networks. A central aim of our approach is that the resulting CMP is sup-
posed to be parameterizable in respect to the number of clusters, the processors in-
stantiated per cluster, memory size, available bandwidth of the on-chip communica-
tion channels, as well as the number and position of specialized hardware accelerators
and I/O interfaces. By this, a high reusability of our architecture can be guaranteed,
providing a concept for scalable system architectures.

The central processing element is the 32 bit RISC processor N-Core [6]. As hard-
ware accelerators can be added to each cluster or to any SB port to trade run-time
functional flexibility for throughput, they help to reduce energy consumption and in-
crease the performance for the system for dedicated applications [10]. The CPUs are
relieved and have free resources for control tasks.

Further advantages of our uniform system architecture lie in the homogeneous pro-
gramming model and in the simplified testability and verification of the circuit. The
on-chip communication is based on a packet switched network-on-chip [9]. Data is
transmitted by means of packet fragments called flits (flow control digits), which
represent the atomic on-chip data transmission units. We have chosen a mesh to-
pology, due to efficient hardware integration.

A close cooperation with the compiler group of our computer science department
provides us with an efficient C compiler tailored to our system [11][12]. This com-
piler will enable the use of the advanced features of our cache (cf. section 4), such as
cache line locking, prefetching, etc. The parallel development of the compiler and of
the target system allows an optimization of the CMP in both directions. The advices
of the compiler developers contributed to important decisions concerning the structure
of the multiprocessor system and vice versa.

3 Chip-Multiprocessor Caches

A lot of research has been done on caches and on the optimization of caches in the
last four decades, but little research has been done using very flexible, synthesizable

www.manaraa.com

86 J.-C. Niemann et al.

caches. In current publications often simulators like the single-processor simulator
SimpleScalar [13] or the cache simulator Cacti [14] are used to determine and com-
pare the performance of various system variants (e.g., in [15]). These benchmarks
determine either the application-specific performance or the physical characteristics
of a cache. Not supporting both, they do not allow for consistent application specific
performance and resource usage determination. Configurable systems like Tensilica's
Xtensa [16] and ARC's configurable cores [17] are synthesizable and can be used for
accurate evaluation of application-specific performance, but they are either configur-
able in just some of the important cache parameters or they are not easily included in
an automated flow that generates many different variants of a system. Therefore, we
report on a multiprocessor cache that allows for the determination of all the men-
tioned characteristics.

4 GigaNetIC Multiprocessor Cache Architecture

Our cache (cf. Fig. 2) can be operated as a unified cache or as a split cache, consisting
of a simple cache for instructions (instruction cache) and a more complex cache for
data (data cache). Besides these sub-caches our cache includes a communication
buffer, which is used for message passing between the CPUs of the same cluster, and
a buffer for uncached accesses (e.g., accesses to peripherals, DMA controllers or to
the SBs).

Fig. 2. Structure of the cache architecture

We decided to implement our cache with a write-back architecture to increase scal-
ability by decoupling processor bus traffic from system bus traffic. The cache uses
write-allocation to simplify coherency preservation. Our cache has a set-associative
architecture with a parameterizable amount of ways. This allows for trade-offs be-
tween area and hit-rate. The cache features a true-LRU replacement policy to maxi-
mize the hit rate and easy cache command implementation. Coherency is maintained
by using a snooping bus (MOESI coherency-protocol [18]) that is accessed through
the use of a snooping slave on the system bus and uses direct data intervention to
shorten cache miss penalties. The used programming model for the complete SoC

www.manaraa.com

 A Multiprocessor Cache for Massively Parallel SoC Architectures 87

(BSP [1]) is based on weak consistency; therefore the cache supports software-initi-
ated synchronization barriers, which are automatically inserted by the compiler. This
offers a high degree of programmability at low complexity. Efficient message passing
is done by using the communication buffer mentioned above as a “mailbox”.

The parameterization of memory depth (8 lines - 220 lines), cache line size (4 Byte
– 128 Byte), associativity (2 - 32) and AMBA bus width (32 Bit – 1024 Bit) increases
the flexibility and therefore decreases the adaptation costs in case of use of our cache
architecture in various system environments. Cache commands to trigger cache ac-
tions by software are: prefetching of a cache line for the data cache or the instruction
cache, prefetching of an exclusive copy of a cache line for the data cache, updating of
the main memory with a copy of a valid cache line of the data cache (write back),
removing a cache line (invalidation) from the data cache (and update the main mem-
ory’s copy, if necessary), locking or unlocking a cache line in the data cache or in the
instruction cache, making a cache line private in the data cache (disabling coherency
instruction; excluding a cache line from the coherency scheme to keep it local and
uninfluenced by other processors). The cache offers early-out on fetches and is
capable to generate a hit-under-miss after an early continuation or after a write miss.

Fig. 3. Structure of the instruction cache

The instruction cache (cf. Fig. 3) is controlled by a central cache control unit. It
initializes the cache memory (SRAM), checks the tag memory and the status bits for
cache hits and initiates the fetching in case of a cache miss. A read request is issued
by the CPU to the CPU request buffer where it is stored until the read is completed.
The cache control unit checks the availability of the requested instructions and gets
the instructions from the instruction memory if found. If a miss occurs, a fetch is initi-
ated by sending a request to the fetch buffer, which sends it through the AMBA master
interface to the memory subsystem. In addition, a location in the instruction cache’s
memory is selected by the replacement control unit to store the instructions that are to
be fetched. The fetched instructions are temporarily stored in the line buffer until they
are forwarded to the CPU and the SRAM write buffer. The CPU preceding instruction
alignment unit arranges the instructions according to the CPU’s bus protocol. The

www.manaraa.com

88 J.-C. Niemann et al.

SRAM write buffer stores fetched instructions that are to be written into the instruction
cache’s instruction memory.

The data cache (cf. Fig. 4) provides a barrier control unit, a data combination unit,
a coherent access control unit and two extra buffers: a write back buffer and a line
sharing buffer. The barrier control unit is used to hold information about synchroni-
zation barriers, which are issued by the CPU.

The data combination unit stores write requests issued by the CPU in case of write
misses until they can be executed. With this, hit-under-misses are possible. The co-
herent access control unit initiates and controls accesses to the snooping slave (sec-
tion 4.2) as well as the main memory in case of data fetch requests or accesses for
maintaining coherency. The write back buffer is used for storing cache lines that will
be written back into the main memory. This can happen either through ordinary line
replacement or through the use of the write back or invalidation cache instructions by
the CPU. The line sharing buffer holds cache lines that will be picked up by other
caches. The cache control unit can move or copy a cache line to this buffer if the sys-
tem’s snooping slave requests to do this.

Fig. 4. Structure of the data cache

In both sub-caches the Status Bits of each cache line (the valid bit in both, and ad-
ditionally the dirty bit, the exclusive bit, and the coherent bit in the data cache) are
stored in registers instead of SRAM memory to allow an easy and multi-ported access
to that information. The first three bits are used for controlling the state in the coher-
ency maintenance protocol (MOESI), the fourth bit indicates if this protocol should be
applied to the respective cache lines.

4.1 Reuse and Application-Specific Optimizations

We implemented most of the settings related to the behavior and structure of the
cache in a parameterizable way, to allow a high degree of flexibility. Anyway, the

www.manaraa.com

 A Multiprocessor Cache for Massively Parallel SoC Architectures 89

cache implementation has been influenced by some characteristics of the system envi-
ronment: e.g., the N-Core processor’s architecture, the ability of the memory bus to
perform parallel transfers, the absence of a level-2 cache, and the programming
model. To allow for new system configurations some extra parameters were added,
e.g., in case of a uniprocessor cache the coherency control unit and all snooping re-
lated parts are removed from the data cache. In this case the amount of status bits in
the status registers is reduced as well: the multiprocessor encoding needs four bits
(valid, dirty, exclusive, and coherent), while the uniprocessor encoding uses only two
of them (valid, dirty). The valid bit shows if the according cache line is empty or is a
valid cache line. The dirty bit indicates a modification by the local CPU so it has to be
written back to the memory subsystem on cache-line replacement. The exclusive bit
signals if this is the only cache holding a valid copy of the line, which is relevant in
case of a write to this cache line. Finally, the coherent bit is used for distinguishing
between ordinary cache lines that are coherent within the whole system and not-co-
herent/ private cache lines. These will not be replaced by the line replacement scheme
and are not influenced by snooping activities and these cache lines can be accessed
only by the local CPU. The coherency bit can be toggled by the disabling coherency
cache instruction.

The cache implements the MOESI coherency protocol. Its main advantages be-
come evident if the main memory access is much slower than the fetching of data
from other caches in the system. In this case the direct data intervention feature of the
MOESI protocol (the direct data exchange between caches) may strongly reduce the
miss penalty. In our system architecture each cluster contains a local memory, but the
direct data intervention feature of MOESI increases the effective size of memory
available to the caches at a low latency and therefore allows the local memory to be
small-sized.

4.2 Snooping

The cluster level communication infrastructure is based on our implementation of an
AMBA interconnection matrix [3] that fully complies with the AMBA 2.0 specifi-
cation. It supports concurrent parallel transfers, but prevents “native snooping” by not
supporting broadcast transfers. To compensate for this, supplementary snooping buses
are usually used. We implemented our snooping bus architecture in a new way by re-
using the arbiter of the AMBA matrix: We created a snooping slave, which links the
snooping bus to the AMBA matrix, so snoop requests can be initiated in parallel to
normal data transfers using the standard bus interface of the caches. The snooping
slave is an ordinary slave at the AMBA matrix that controls the snooping bus.
Snooping requests, sent to the slave by using the AMBA matrix, are forwarded to the
snooping bus, which distributes them to all of the caches. The answers of the slaves
are preprocessed and the resulting snoop response is then sent through the AMBA
matrix to the snoop issuing cache.

In this system the snooping slave is no bottleneck: instruction fetches do not need
snooping slave accesses, so a cache can fetch instructions while another one is using
the snooping slave. Data fetches use the snooping slave only for investigating the lo-
cation of the data. The actual fetching of the data can exploit the parallel transfer ca-
pabilities of the AMBA matrix. An example for a scenario of concurrent transfers is

www.manaraa.com

90 J.-C. Niemann et al.

shown in Fig. 5 (the arrows show the directions of the read data, write data, and snoop
responses within the AMBA matrix): a snooping access to the snooping bus (1), a
write access to status registers within the switch box (2), a sharing access based on di-
rect data intervention (3), and a read access (4).

We have chosen the combination of a snooping architecture instead of a directory-
based architecture and a non-broadcasting AMBA matrix instead of a broadcasting
bus, because of the communication requirements of our system:

First, the main memory is shared to all clusters of the mesh, but consistency has to
be maintained only within the clusters. Consistency checks between clusters are not
necessary, because in our system a central system component called load balancer as-
sures that data is never shared between different clusters at the same time. In addition,
assuming that each cluster consists of a small number of processors (up to eight) a
snooping bus protocol promises less overhead than a distributed directory. Another
advantage is the easier replaceability of the AMBA matrix by less area-intensive
designs.

Second, the non-broadcasting AMBA matrix offers an enormous bandwidth that
scales with the amount of active components, like, e.g., CPUs. The high bandwidth
enables low latency data fetches, as far as the data is contained within reach (in other
caches of the same cluster or in the local memory).

Fig. 5. Parallel transfers through an AMBA-Matrix on cluster level

Our data cache architecture allows for just one snooping request each clock cycle
to assure a high utilization of CPU while keeping cache complexity at a reasonable
level. The instruction cache does not need coherency checks, since the programming
model does not allow self-modifying code.

www.manaraa.com

 A Multiprocessor Cache for Massively Parallel SoC Architectures 91

To allow more than two concurrent requests (a snoop request and a CPU request)
to the data cache, the tag ram would have to have more than two ports. This would be
very expensive in terms of area.

5 Analysis Results

In the following, we show how our SystemC model of the whole CMP and our rapid
prototyping system RAPTOR2000 help us to speed up the test and verification of our
VHDL implementation. Additionally, the test and verification of the software is
accelerated. Afterwards, we show the synthesis results for a state-of-the-art 90 nm
standard cell CMOS process and combine this with benchmark results to illustrate the
advantages and disadvantages of several typical configuration variants for the bench-
marks.

5.1 Simulation Models and the RAPTOR2000 Rapid Prototyping System

All of the four options for simulation or emulation of our system have their advan-
tages and handicaps. Before the implementation of a SystemC model, we had just a
simple C-based prototype that simulates cycle-accurate only one processing cluster of
any number of N-Cores with caches of a random size. This model is designed for very
fast simulation and is less accurate in respect to bus accesses and memory accesses,
like, e.g., cache behavior. For these accesses only the average access duration could
be configured. The model considers if the needed data is found in the cache, in the
main memory or in another cache. So the effect of direct data intervention is accu-
rately modeled by the cluster level simulator. Based on this first simulator, a SystemC
model was developed, which gave us opportunities for more detailed design space
exploration and the quick comparison of different design variants. During the imple-
mentation phase of the final VHDL model it served as a host system for mixed level
simulation to verify and debug parts of the VHDL implementation. This enabled an
early test, verification and profiling of the application software. After finalizing the
VHDL implementation we had two additional options: the simulation of the complete
system using a VHDL simulator, which is the slowest option, but offers the widest
opportunities to monitor and trigger every signal, and the emulation of the system
using our rapid prototyping system RAPTOR2000. The rapid prototyping system
offers near-ASIC speed at the same level of detail that is offered by the VHDL
simulator, but in contrast to, e.g., the SystemC model, the amount of complexity that
can be emulated directly influences the utilization of the limited FPGA resources.
However, the rapid prototyping system’s main advantages are its speed and its
physical properties: it is possible to use it with “real-world hardware”, e.g., Ethernet
interfaces to communicate with other network devices.

We measured the performance of our system using four different benchmarks: the
Dhrystone 2.1 benchmark, a bubblesort implementation, a quicksort implementation
and a packet processing task (IP header check), which is, e.g., a computational inten-
sive part of a DSL Access Multiplexer (DSLAM) application scenario. Given below
(in Table 1) is an overview over the speeds that can be reached using the four differ-
ent implementation options for our four benchmarks:

www.manaraa.com

92 J.-C. Niemann et al.

Table 1. The four simulation / emulation models

 C model SystemC simulation VHDL simulation RAPTOR2000
Execution speed 10 MHz 100 kHz 100 Hz 20 MHz
Level of detail Poor Medium High High
Constraints Cache is fixed to unified

architecture. Memory and
bus simulation limited to
an average miss penalty
for direct data interven-
tion, an average miss pen-
alty for main memory ac-
cesses, and the average
latency of cache hits.

Cache is fixed to unified ar-
chitecture. Associativity (2)
and cache line size
(16 Bytes) fixed.

None None

5.2 Performance Analysis

In this section, we analyze the results of our performance measurements. The per-
formance was measured using the four benchmarks described above. All of our meas-
urements were done independently, so they were done using a cold-start cache. To
simplify the comparison of the results, we assumed a clock frequency of 250 MHz.
The upper bound of our measurements was a system with large local memories at-
tached to each processor. Without caches and local memories, each memory access
would cost at least 10 cycles due to the bus access pipelines, the global routing and
the off-chip access duration. In reality this value would be much higher due to slower
off-chip memory and bus contention. Bus contention is caused by the multiprocessor
environment in conjunction with the arbiter of the different communication stages.

To determine the performance of our system we measured the runtime of the men-
tioned benchmarks using our toolchain. Our toolchain provides a comfortable and
cycle accurate profiling and run time analysis of software blocks. Even so, as the
number of simulations grows very fast with the number of variables and their values,
we limited our measurements to the associativity (2, 4, or 8), the number of cache
lines per sub-cache (32, 64, 128, or 256), the cache line width (32, 64, 128, or 256),
the main memory latency (0, 5, 10, or 20 cycles), the sub-cache architecture (split or
unified) and the availability of a cache (use a cache or do not use a cache). In total a
workload of 2716 Benchmark runs were performed. To automatically execute the
benchmarking process, we created a comfortable simulation automation tool called
MultiSim for ModelSim and SystemC. This enabled us to receive “Excel-ready” pre-
processed analysis data of all these simulations.

2716 benchmark runs result in a lot of data. This is why we utilized statistics to
determine the dependencies between cache architecture and application performance.
We computed the correlation coefficients between those two to discover linear de-
pendencies. The correlation coefficients are shown in Table 2.

Please note that positive values correspond to a lower performance for the first
three benchmarks, but a higher performance for the last one. The main memory
latency given is the minimal latency. During the benchmark runs we sometimes
experienced a higher latency because of bus congestion as well as interference
between the CPUs due to bad regular access patterns.

www.manaraa.com

 A Multiprocessor Cache for Massively Parallel SoC Architectures 93

Table 2. Correlation coefficients of our simulations

Correlation coefficients Higher
associativity

Higher num-
ber of lines

Higher
line width

Higher
memory la-

tency

Split
cache

Do not
use cache

IP Header Check
Small packets (46 Bytes)
processing duration -0.05 -0.01 -0.39 0.62 0.05 0.35
Middle sized packets
(552 Bytes)
processing duration -0.08 -0.01 -0.20 0.32 -0.06 0.65
Large packets
(1550 Bytes)
processing duration -0.08 0.00 -0.16 0.26 -0.07 0.68
Quicksort
Processing duration -0.11 -0.02 -0.03 0.10 -0.08 0.72
Bubblesort
Processing duration -0.12 -0.12 -0.13 0.11 -0.08 0.71
Dhrystone
DMIPS 0.41 0.38 0.16 0.14 0.26 -0.21

Based on our results we are able to draw some conclusions:

• The larger the IP packets processed by the IP Header Check algorithm are, the
more important the use of a cache is.

• The smaller the IP packets are, the more important is low main memory latency.
• The performance of the IP Header Check usually can be improved by increasing

the size of the cache lines. Processing of smaller packets is accelerated much more
than processing of larger packets.

• The availability of a cache in most cases has a strong positive influence on sorting
performance.

• A split cache architecture often is more suitable for executing the Dhrystone
benchmark than a unified cache architecture.

• The Dhrystone benchmark is usually accelerated by using a cache and by either a
higher associativity or more cache lines.

Conclusions based on statistics are a good direction for optimizing a SoC for a
certain application, but to gain maximum performance the actual performance values
have to be checked in depth.

5.3 Synthesis Results

We synthesized a processing element consisting of our N-Core processor, our cache
and both, our AHB master interface and our AHB slave interface using a state-of-the-
art 90 nm process. We used a front-end flow for a 90nm standard cell process
considering worst case conditions. Setting place and route aside, our synthesis results
can be seen as a good indicator for the area of the final product.

While a simulation of a complex SoC can be performed in a reasonable amount of
time, synthesis is still a problem. Taking into account the benchmarks used, our sys-
tem’s size and the target hardware architecture (standard cells), synthesis takes a mul-
tiple of the simulation duration. In addition, running a series of syntheses incorporates
more effort for the engineer, due to the lack of flexible memory. For simulation

www.manaraa.com

94 J.-C. Niemann et al.

highly parameterized memory models can be used, for synthesis no analogous IP can
be used. A memory generator was used to generate an instance of low power SRAM
to be used in a specific variant of our system. The memory generation was initiated by
hand. Therefore we limited our synthesis effort to seven cases: starting with a “stan-
dard configuration” with 256 lines of 128 bit, an associativity of 2, a unified cache
architecture and a 32 bit wide system bus interface, we changed just one of these vari-
ables to get another 5 configurations. Additionally, we synthesized a configuration
without caches. The results of the synthesis are shown in Table 3.

Table 3. Resources used by the cache in five different configurations

Configuration Line size
[Bit]

Depth
[lines]

Associativity Split
cache

Area
[mm²]

Speed
[ns]

Power at 250 MHz
[mW]

Short cache lines 64 256 2 no 0.61 4.16 136.79
Split cache 128 256 2 yes 1.11 4.08 276.13
High associativity 128 256 4 no 1.31 4.48 376.18
Less cache lines 128 128 2 no 0.58 3.92 164.87
Standard 128 256 2 no 0.73 4.10 180.99

For the standard configuration this leads to the following performance for the
whole system, including 32 processing element (Table 4):

Table 4. Resources used by the whole system

SoC main
components

Amount Area
[mm²]

Total area
[mm²]

Frequency
[MHz]

Power
at 250 MHz [mW]

Total power
at 250 MHz [mW]

Caches 32 0.7293 23.34 243.90 180.99 5791.68
N-Cores 32 0.1273 4.07 158.73 11.74 375.68
AMBA master
interfaces 32 0.0075 0.24 354.61 1.11 35.52
AMBA slave
interfaces 56 0.0008 0.04 465.12 0.15 8.40
AMBA matrixes 8 0.0969 0.78 265.96 25.16 201.28
Snooping slaves 8 0.0020 0.02 420.17 0.55 4.40
Packet buffer 8 0.9519 7.62 250.00 35.50 284.00
Switchboxes
(NoC) 8 0.5748 4.60 434.78 53,00 424.00

Total 40.70 158.73 7124.96

Figure 6 shows the distribution of area and power in the system, based on the table
above. As shown, in our system the cache has the highest impact on both. For doing a
cost-benefit analysis we calculated the performance values of the complete SoC.
These are shown in Table 5 in relation to our standard configuration.

All benchmarks show a huge increase in performance by using caches, although the
systems area grows at high rates. In addition, the table shows approaches for op-
timization. For example, instead of using the standard configuration the configuration
with half of the cache lines would result in a reduction of area (decrease by 11%) as
well as huge speed-up (speed-up factor: 4.51) for a system executing the bubblesort
algorithm. The table’s values are in line with the conclusions drawn in the last chapter,
except the one stating that a higher associativity improves Dhrystone performance.

www.manaraa.com

 A Multiprocessor Cache for Massively Parallel SoC Architectures 95

Since the systems clock frequency is limited by the N-Core processors architecture
and all cache syntheses lead to clock frequencies higher than the processors speed, the
cache options have no influence on the frequency of the whole system using this
processing element. But as our cache architecture can be adapted to a broad variety of
processing cores, we will benefit by using high-speed core variants.

Total power

Caches; 81%

Packet
buffer; 4%

Switchboxes
(NoC); 6%

N-Cores; 5%

Others; 4%

Total area

Caches; 57%
Packet

buffer; 19%

Switchboxes
(NoC); 11%

N-Cores;
10%

Others; 3%

Fig. 6. The influence of the system’s components on total system area and power consumption

Table 5. Cost and benefit of various cache configurations in relation to the standard configura-
tion

Performance

Configuration
Area
[mm²]

IPHC
Small

IPHC
Medium

IPHC
Large Quicksort Bubblesort Dhrystone

Standard 100% 100% 100% 100% 100% 100% 100%

Short cache lines 91% 64% 69% 71% 98% 451% 108%
Split cache 130% 76% 91% 97% 104% 469% 114%
High associativity 146% 110% 101% 101% 100% 451% 98%
Less cache lines 89% 100% 100% 99% 100% 451% 95%
Without cache 43% 22% 8% 7% 5% 21% 5%

Increased energy efficiency is another outcome of using our cache. This is due to a
much shorter runtime of the benchmarks in relation to the power consumption of the
cache. In standard configuration the system needs only between 11.4% (Dhrystone)
and 51.6% (IPHC small) of the energy compared to the system without cache.

6 Conclusion

In this paper, we have shown both, the cost and the benefits of a cache in an on-chip
MPSoC evaluating four benchmarks and using a state-of-the-art 90 nm standard cell
CMOS process. Despite high costs in area and power consumption we observed high
performance increases and remarkable energy reduction (up to 88.6%) concerning the
presented benchmarks. Even better results could be achieved using a cache
configuration tailored to the application.

Our research was enabled by our MultiSim tool that allows for accurate and exten-
sive design space exploration. Further research has to be done in automating the syn-
thesis workflow to integrate synthesis into the benchmarking process. This way an

www.manaraa.com

96 J.-C. Niemann et al.

automatic cost-benefit analysis would be possible. In addition, the application specific
power consumption may be determined, because switching activities based on statisti-
cal models are not very accurate.

In future experiments measurements with warm-start caches will be performed to
do research with the more realistic scenarios of processing elements executing pro-
grams for longer runtimes instead of one time execution runs. This will be done, in
particular, using a complete DSLAM benchmark that is mapped to our system and
benchmarks similar to EEMBC using various network traffic patterns. Especially for
tasks as complex as these, with a lot of computation per packet, our results let us ex-
pect high performance increases. Our results show that even caches as small as our
standard configuration yield a substantial acceleration, showing that they are suitable
for highly parallel SoCs.

Looking at the different configurations synthesized, one can see that there are high
fixed costs in terms of area and power. Beside others, this is caused by the logic sup-
porting the cache commands. Currently, the cache commands only add additional
costs, without any benefit, due to the lack of the compiler supporting the cache com-
mands. Further experiments with a compiler supporting these commands are expected
to exhibit noticeable higher system performance.

Besides design space exploration in regard to various cache configurations, the
high flexibility of our cache allows it also to be used in other multiprocessor systems
that are not based on our GigaNetIC architecture. As a subset even single processor
environments are supported. The only requirements for the processor bus interface
and the system bus interface to work efficient is the support of the widespread address
pipelining and 32-bit-wide address and data buses from and to the processing
elements.

Acknowledgements. The research described in this paper was funded by the Federal
Ministry of Education and Research (Bundesministerium für Bildung und Forschung),
registered there under grant number 01AK065F (NGN-PlaNetS), and by the Collabo-
rative Research Center 614.

References

1. O. Bonorden, N. Brüls, D. K. Le, U. Kastens, F. Meyer auf der Heide, J.-C. Niemann, M.
Porrmann, U. Rückert, A. Slowik and M. Thies. A holistic methodology for network
processor design. In Proceedings of the Workshop on High-Speed Local Networks held in
conjunction with the 28th Annual IEEE Conference on Local Computer Networks, pages
583-592, October 20-24 2003.

2. J.-C. Niemann, M. Porrmann and U. Rückert. A Scalable Parallel SoC Architecture for
Network Processors. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Tampa, FL., USA, 2005.

3. Christian Liß. Implementation of an AMBA AHB Interconnection Matrix. Technical
Report. University of Paderborn, Paderborn, Germany. May 2004.

4. H. Kalte, M. Porrmann and U. Rückert. A Prototyping Platform for Dynamically Recon-
figurable System on Chip Designs. In Proceedings of the IEEE Workshop Heterogeneous
reconfigurable Systems on Chip (SoC), Hamburg, Germany, 2002.

www.manaraa.com

 A Multiprocessor Cache for Massively Parallel SoC Architectures 97

5. J.-C. Niemann, C. Puttmann, M. Porrmann and U. Rückert. GigaNetIC - A Scalable
Embedded On-Chip Multiprocessor Architecture for Network Applications. In ARCS'06
Architecture of Computing Systems, pages 268-282, 13-16 March 2006.

6. D. Langen, J.-C. Niemann, M. Porrmann, H. Kalte and U. Rückert. Implementation of a
RISC Processor Core for SoC Designs FPGA Prototype vs. ASIC Implementation. In Proc.
of the IEEE-Workshop: Heterogeneous reconfigurable Systems on Chip (SoC), Hamburg,
Germany, 2002.

7. M. Grünewald, U. Kastens, D. K. Le, J.-C. Niemann, M. Porrmann, U. Rückert, M. Thies
and A. Slowik. Network Application Driven Instruction Set Extensions for Embedded
Processing Clusters. In PARELEC 2004, International Conference on Parallel Computing
in Electrical Engineering, Dresden, Germany, pages 209-214, 2004.

8. R. Eickhoff, J.-C. Niemann, M. Porrmann and U. Rückert. Adaptable Switch boxes as on-
chip routing nodes for networks-on-chip. In From Specification to Embedded Systems Ap-
plication, International Embedded Systems Symposium (IESS), A. Rettberg , M. C.
Zanella and F. J. Rammig Ed., pages 201-210, Manaus, Brazil, 15-17 August 2005.

9. W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip Interconnection Networks.
In Proceedings of the Design Automation Conference, pages 684-689, Las Vegas, Nevada,
USA, June 18-22 2001.

10. J.-C. Niemann, M. Porrmann, C. Sauer and U. Rückert. An Evaluation of the Scalable
GigaNetIC Architecture for Access Networks. In Advanced Networking and Communica-
tions Hardware Workshop (ANCHOR), held in conjunction with the ISCA 2005, 2005.

11. E. Stümpel, M. Thies and U. Kastens. VLIW Compilation Techniques for Superscalar Ar-
chitectures. In Proc. of 7th International Conference on Compiler Construction CC'98, K.
Koskimies Ed., 1998.

12. U. Kastens, D. K. Le, A. Slowik and M. Thies. Feedback Driven Instruction-Set
Extension. In Proceedings of ACM SIGPLAN/SIGBED 2004 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES'04), Washington, D.C., USA, June
2004.

13. D. Burger and Todd M. Austin. The SimpleScalar tool set, version 2.0. SIGARCH Com-
puter Architecture News. Vol. 25, No. 3, p. 13-25. ACM Press. New York, NY, USA,
1997.

14. D. Tarjan, S. Thoziyoor and N. P. Jouppi. CACTI 4.0. Technical Report. HP Laboratories
Palo Alto, Palo Alto, CA, USA, June 2006 .

15. J. Mudigonda, H. Vin, R. Yavatkar. Managing Memory Access Latency in Packet Process-
ing In SIGMETRICS '05: Proceedings of the 2005 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer systems, pages 396-397, Banff,
Alberta, Canada. June 2005.

16. Tensilica. Xtensa LX Microprocessor, Overview Handbook. Internet publication, Santa
Clara, CA, USA, 2004. Source: http://tensilica.com/pdf/xtensalx_overview_handbook.pdf,
Seen online: 05.10.2006.

17. ARC International. ARC 700 configurable core family. Internet publication. San Jose, CA,
USA, 2005. Source: http://arc.com/evaluations/ARC_700_Family.pdf, Seen online:
05.10.2006

18. P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols and their
support by the IEEE futurebus. In 13th Annual International Symposium on Computer Ar-
chitecture, ISCA, Japan, 1986.

www.manaraa.com

Improving Resource Discovery in the

Arigatoni Overlay Network�

Raphaël Chand1,��, Luigi Liquori2, and Michel Cosnard2

1 University of Geneva, Switzerland
Raphael.Chand@cui.unige.ch

2 INRIA Sophia Antipolis, France
{Michel.Cosnard,Luigi.Liquori}@inria.fr

Abstract. Arigatoni is a structured multi-layer overlay network provid-
ing various services with variable guarantees, and promoting an intermit-
tent participation to the virtual organization where peers can appear,
disappear and organize themselves dynamically. Arigatoni mainly con-
cerns with how resources are declared and discovered in the overlay,
allowing global computers to make a secure, PKI-based, use of global ag-
gregated computational power, storage, information resources, etc. Ari-
gatoni provides fully decentralized, asynchronous and scalable resource
discovery, and provides mechanisms for dealing with dynamic virtual
organizations. This paper introduces a non trivial improvement of the
original resource discovery protocol by allowing to register and to ask for
multiple instances. Simulations show that it is efficient and scalable.

1 Introduction

The explosive growth of the Internet gives rise to the possibility of designing
large overlay networks and virtual organizations consisting of Internet-connected
global computers, able to provide a rich functionality of services that makes
use of its aggregated computational power, storage, information resources, etc.
Arigatoni [3] is a structured multi-layer overlay network which provides resource
discovery with variable guarantees in a virtual organization where peers can
appear, disappear and organize themselves dynamically.

The virtual organization is structured in colonies, governed by global brokers,
GB. A GB (un)registers global computers, GCs, receives service queries from
clients GCs, contacts potential servants GCs, trusts clients and servers and al-
lows the clients GC and the servants GCs to communicate. Registrations and
requests are performed via a simple query language à la SQL and a simple or-
chestration language à la LINDA. Communication intra-colony is initiated via
only one GB, while communication inter-colonies is initiated through a chain of
GB-2-GB message exchanges. Once the resource offered by a global computer has
been found in the overlay network, the real resource exchange is performed out
of the overlay itself, in a peer-to-peer fashion.
� This work is supported by Aeolus FP6-2004-IST-FET Proactive.

�� This work was done while the author was at INRIA Sophia Antipolis, France.

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 98–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Improving Resource Discovery in the Arigatoni Overlay Network 99

The main challenges in Arigatoni lie in the management of an overlay network
with a dynamic topology, the routing of queries and the discovery of resources
in the overlay. In particular, resource discovery is a non trivial problem for
large distributed systems featuring a discontinuous amount of resources offered
by global computers and an intermittent participation in the overlay. Thus,
Arigatoni features two protocols: the virtual intermittence protocols, VIP, and
the resource discovery protocol, RDP. The VIP protocol deals with the dynamic
topology of the overlay, by allowing individuals to login/logout to/from a colony.
This implies that the process of routing may lead to some failures, because some
individuals have logged out, or are temporarily unavailable, or because they have
been manu militari logged out by the broker because of their poor performance
or avidity (see [9]).

The total decoupling between GCs in space (GCs do not know each other), time
(GCs do not participate in the interaction at the same time), and synchronization
(GCs can issue service requests and do something else, or may be doing something
else when being asked for services) is a major feature of Arigatoni overlay network.
Another important property is the encapsulation of resources in colonies. All
those properties play a major role in the scalability of Arigatoni’s RDP.

The version V1 of the RDP protocol [6] enabled to ask for one service at the
time, like, e.g. CPU or a particular file. The version V2, presented in this paper,
allows multiple instances of the same service. Adding multiple instances is a non
trivial task because the broker must keep track (when routing requests) of how
many resource instances were found in its own colony before delegating the rest
of the instances to be found in the surrounding supercolonies.

As defined above, GBs are organized in a dynamic tree structure. Each GB,
leader of its own subcolony, is a node of the overlay network, and a root of the
subtree corresponding to its colony. It is then natural to address scalability issues
that arise from that tree structure. In [6], we showed that, under reasonable as-
sumptions, the Arigatoni overlay network is scalable. The technical contributions
of this paper can be summarized as follows:

– A new version of the resource discovery protocol, called RDP V2, that allows
for multiple instances; for example, a GC may ask for 3 CPUs, or 4 chunks
of 1GB of RAM, or one compiler gcc. Multiple services requests can be also
sent to a GB; each service will be processed sequentially and independently of
others. If a request succeeds, then via the orchestration language of Arigatoni
(not described in this paper), the GC client can synchronize all resources
offered by the GC’s servants.

– A new version of the simulator taking into account the non trivial improve-
ments in the service discovery.

– Some simulation results that shows that our enhanced protocol is still scalable.

The rest of the paper is structured as follows: after Section 2 describing the
main machinery underneath the new service request, Section 3 introduces the
pseudocode of the protocol. Then, Section 4 shows our simulation results and
Section 5 provides related work analysis and concluding remarks. An Appendix
conclude with some auxiliary algorithms. For obvious lack of space, we refers to

www.manaraa.com

100 R. Chand, L. Liquori, and M. Cosnard

http:// www-sop.inria.fr/mascotte/Luigi.Liquori/ARIGATONI for an ex-
tended version of this paper.

2 Resource Discovery Protocol RDP V2

Suppose a GC X registers to its GB and declares its availability to offer a ser-
vice S, while another GC Y issues a request for a service S′. Then, the GB
looks in its routing table and filters S′ against S. If there exists a solution
to this matching equation, then X can provide a resource to Y. For example,
S

�
= [CPU=Intel, Time<10sec] and S′ �

= [CPU=Intel, Time>5sec] match, with at-
tribute values Intel and Time between 5 and 10 seconds. When a global computer
asks for a service S, it also demands a certain number of instances of S. In RDP
V2 this is denoted by “SREQ:[(S, n)]”.

Each GB maintains a table T representing the services that are registered
in its colony. The table is updated according to the dynamic registration and
unregistration of GC in the overlay. For a given S, the table has the form T [S] =
[(Pj , mj)]j=1...k, where (Pj)j=1...k are the address of the direct children in the
GB’s colony, and (mj)j=1...k are the instances of S available at Pj .

For a service request SREQ:[(S, n)], the steps are:

– Look for q distinct GCs capable of serving S in the local colony.
– If q<n, then search r remaining instances (n−q) in local subcolonies.
– If r<(n−q), then delegate remaining instances (n−q−r) to the leader of the

colony.

A GC receiving a service request chooses the services that it accepts/rejects to
serve. It then generates a SRESP message containing the lists of services ac-
cepted/rejected, and sends it to its GB. The response messages are then propa-
gated back in the overlay, following the reverse path.

A Service Request. SREQ:[(S, n)] may arrive bottom-up to the GB directly from
its colony, or top-down from its own leader. In both cases, the leader tries to find
n distinct GC that can serve S. More precisely, the list [(Pj , mj)]j=1...k contains
all the direct children in GB’s colony that can serve S (child Pj with mj instances
of S). The discovery protocol features two search modes, selective and exhaustive.
The selective mode is resource conservative at the price of important delays in
case of low acceptance rates. The exhaustive mode is resource eager, but is inde-
pendent of the acceptance rate. Let SREQ:[(S, n)], and T [S] = [(Pj , mj)]j=1...k.
The selective mode consist in:

– If
∑k

i=1 mi≥n, then there are enough resources in the GB’s colony to serve
S. Let y ≤ k be the smallest index such that

∑y
i=1 mi ≥ n, and

∑y−1
i=1 mi<n.

Then, SREQ:[(S, mi)] is sent to all Pi with (i≤y−1), and SREQ:[(S, n−∑y−1
i=1 mi)] is sent to Py.

– If
∑k

i=1 mi<n, then there are not enough GCs in the GB’s colony that can serve
S. Then, SREQ:[(S, mi)] is sent to all Pi (i≤k), and SREQ:(S, n−

∑k
i=i mi)]

http://www-sop.inria.fr/mascotte/Luigi.Liquori/ARIGATONI
http://www-sop.inria.fr/mascotte/Luigi.Liquori/ARIGATONI

www.manaraa.com

Improving Resource Discovery in the Arigatoni Overlay Network 101

is delegated to the GB’s leader. The rationale is that we first try to ask for
as many resources in GB’s colony, and then ask GB’s leader for the remaining
resources.

The exhaustive search mode consists in sending SREQ:[(S, min(mi, n))] to all
Pi (1≤i≤k), and to delegate SREQ:[(S, n−

∑k
i=1 min(mi, n)] to the GB’s leader.

The rationale is to first ask for all resources in the GB’s colony, and then ask
the GB’s leader for the remaining resources.

A Service Response. SRESP:ACC:[(S, a)], or SRESP:REJ:[(S, d)], may follow ser-
vice requests for services S. That is, “a” GCs accepted to serve S, and “d” denied.
Due to the asynchrony of Arigatoni, more replies can arrive to the colony’s leader
(i.e. a+d≥n). As for requests, there exists two modes that determine the way
those acceptances are propagated back to the leader. In the selective reply mode,
we return at most the number of instances of S that were asked by the leader
whereas in the exhaustive reply mode, we return all acceptances.

As for acceptances there exists two modes that determine the way those ac-
ceptances are propagated back to the leader. In the selective search mode, the
whole colony was asked for n instances of S, at most. This implies that exactly
d instances of S must now be looked for to fulfill the original request. Hence,
we first try to find d instances of S in other subcolonies. We then delegate the
instances that could not be found to the leader. Finally, the remaining instances
are reported back as rejected. In the exhaustive search mode, each sub-colony
was asked for n instances of S, at most. Hence, there may be other sub-colonies
that have not replied yet, and which may reply with enough acceptations to
fulfill the request. The remaining instances must be delegated to the leader.

3 RDP Pseudo-code

In this section, we detail the pseudo-code of the RDP V2. Five variables are
used for each Arigatoni’s interaction “ask-route-reply-route-back”: Path, asked,
downstream, upstream, and SendList. Each message (SREQ or SRESP) con-
tains a unique identifier id, that is initially set by the GC that sends the initial
SREQ message. Variable Path is a simple hash keyed by the identifier of the
message. The other variables are double hashes which first key is the identifier
of the message, and second key a given service S. The intuitive meaning of those
variables is listed below.

– Path{id}: Peer address: identifies the child from which the original SREQ
message came from.

– asked{id}{S}: Integer: number of instances of S asked and not replied.
– downstream{id}{S}: Integer: instances of S asked in colony and not replied.
– upstream{id}{S}: Integer: instances of S delegated but not replied.
– SendList{id}{S}: (Peer address,Integer): the list of direct children that are

potentially capable of serving S.

www.manaraa.com

102 R. Chand, L. Liquori, and M. Cosnard

Algorithm 1. Receiving SREQid:[(S, n)] from Pfrom (executed by P)

1: Path{id} ← Pfrom // To trace back the reverse route
2: if SendList{id}{S} = ∅ then
3: SendList{id}{S} ← Filter(S, Pfrom) // Filter S in P’s routing table
4: end if
5: (RoutingList, remaining) ← Route(Pfrom , S, n, search mode) // Build a routing list
6: asked{id}{S} ← asked{id}{S} + n

7: if remaining �= 0 then // Remaining instances to find
8: if L �= ∅ and L �= Pfrom then // L exists and is different from Pfrom
9: Insert L : (S, remaining) in RoutingList

10: upstream{id}{S} ← upstream{id}{S} + remaining

11: else // P’s colony is isolated
12: Send SRESPid:REJ:[(S, remaining)] to Pfrom
13: asked{id}{S} ← asked{id}{S} − remaining
14: end if
15: end if
16: for each Q : (S, m) ∈ RoutingList do
17: Send SREQid:[(S, m)] to Q // Send SREQid to every element in RoutingList
18: end for

The pseudo-code of RDP V2 is showed in Algorithms [1 − 5]. For obvious lack
of space, we details only Algorithms 1, and 2, and 3. The Appendix presents
succintely the remaining auxiliary algorithms.

Case of Service Request (Alg. 1). Consider an individual P receiving a reply
message SREQid from a neighbor Pfrom, and let L be P’s leader.

– In line 1, the originator of the request is first recorded in Path, so as to allow
reply messages to follow the reverse path.

– In line 3, the Filter function (Alg. 4) determines the SendList corresponding
to service S, i.e., the list of direct children of P potentially able of serving S.

– In line 5, the Route function (Alg. 5) builds (RoutingList, remaining), i.e.,
the list of children that will be sent a particular service request, according to
the selected search mode, and the positive number of the remaining instances
for which no servant has been found. The RoutingList contains a list of
mappings of the form Q:[(S, m)] which means that neighbor Q is to be sent
a service request SREQ:[(S, m)].

– In line 8, if L exists and is not the originator of the request (to avoid routing
loops), then the entry L:(S, remaining) is appended to the RoutingList (line
9), and the upstream counter is incremented accordingly (line 10); else (line
11, L exists and it is the originator of the request), since servants can be
found for remaining instances of service S, a rejection reply is sent back to
the originator of the request (line 12), and the asked counter is decremented
accordingly (line 13).

– In line 17, a service request is sent to each neighbor Q having an entry in
the RoutingList.

Case of Service Response (Alg. 2,3). Consider an individual P receiving a reply
message SRESPid from a neighbor Pfrom. The operation of the resource discovery

www.manaraa.com

Improving Resource Discovery in the Arigatoni Overlay Network 103

Algorithm 2. Receiving SRESPid:ACC:[(S, a)] from Pfrom (executed by P)
1: case search mode is

“selective” :
2: Send SRESPid:ACC:[(S, a)] to Path{id} // Forward the SRESP
3: “exhaustive” :
4: if Pfrom = L then // Top-down request
5: upstream{id}{S} ← max(upstream{id}{S} − a; 0)
6: else // Bottom-up request
7: downstream{id}{S} ← max(downstream{id}{S} − a; 0)
8: end if
9: if asked{id}{S} ≥ a then // More instances asked than accepted

10: asked{id}{S} ← asked{id}{S} − a
11: acc return← a
12: else // More instances accepted than asked
13: acc return← asked{id}{S} − a
14: asked{id}{S} ← 0
15: end if
16: case reply mode is

“selective” :
17: Send SRESPid:ACC:(S, a) to Path{id} // Accepted “a” instances
18: “hexaustive” :
19: Send SRESPid:ACC:(S, acc return) to Path{id} // Accepted “acc return” instances
20: end case
21: end case

algorithm is detailed in pseudo-code in Algorithms 2 and 3 and explained
hereafter.

– Acceptance (Alg. 2). Let SRESPid:ACC:[(S, a)] arrive from Pfrom at P, i.e.,
“a” global computers in P’s colony accepted to serve service S.

If the selective search mode was used to route the original service request
SREQid : (S, n) (issued by Path{id}), then the whole colony was asked for
at most n instances of S. Hence, no more than n acceptances may arrive from
P’s colony. Thus, the reply message is simply forwarded back to Path{id}
(line 2).

If the exhaustive search mode was used, then each child was asked for at
most n instances of S. Hence, it is possible that a number of acceptances
higher than n arrives from L’s colony. To do this, counters asked, upstream,
downstream, and acc return are updated accordingly (lines 5 − 14).

The selective reply mode simply reply back to Path{id} with “a” accep-
tation instances (line 17), while the exhaustive reply reply with “acc return”
instances (line 19).

– Rejections (Alg. 3). Let SRESPid : REJ:[(S, d)] arrive from Pfrom at P, i.e.,
“d” global computers in P’s colony refused to serve S. This implies that all
global computers in P’s colony have been sent a request for S.

If the sender of the message is the leader L, then no other potential servants
for the d instances of S can be found. Consequently, the rejection message is
simply forwarded back (line 2), and counters asked and upstream updated
accordingly (lines 3 and 4).

If L is not the sender of the rejected message, then there may be other po-
tential servants in the colony or in other surrounding colonies. The operation
of the protocol depends on the search mode that was used.

www.manaraa.com

104 R. Chand, L. Liquori, and M. Cosnard

Algorithm 3. Receiving SRESPid:REJ:[(S, d)] from Pfrom (executed by P)
1: if Pfrom = L then // Return rejections
2: Send SRESPid:REJ:[(S, d)] to Path{id}
3: asked{id}{S} ← asked{id}{S} − d
4: upstream{id}{S} ← upstream{id}{S} − d

5: else // Retry at other children or delegate
6: case search mode is

“exhaustive” : // Try to delegate or reject
7: downstream{id}{S} ← max(downstream{id}{S} − d; 0)
8: if asked{id}{S} ≤ downstream{id}{S} + upstream{id}{S} then
9: // Less instances asked than down/upstream’ed

10: Wait for more replies from other children
11: else // More instances asked than down/upstream’ed
12: remaining ← asked{id}{S} − downstream{id}{S} − upstream{id}{S}
13: if L �= ∅ and L �= Path{id} then
14: upstream{id}{S} ← upstream{id}{S} + remaining
15: Send SREQid:(S, remaining) to L
16: else
17: asked{id}{S} ← asked{id}{S} − remaining
18: Send SRESPid:REJ:(S, remaining) to Path{id}
19: end if
20: end if
21: Remove Pfrom from SendList{id}{S}
22: “selective” : // Try other children, delete, or reject
23: Remove Pfrom from SendList{id}{S} // Don’t send requests to Pfrom anymore
24: (RoutingList, remaining) ← Route(Pfrom , S, d, search mode)
25: if remaining �= 0 then // Still some remaining instances to treat
26: if L �= ∅ and L �= Pfrom then // L exists and is different from Pfrom
27: Insert L : (S, remaining) in RoutingList
28: upstream{id}{S} ← upstream{id}{S} + remaining

29: else // P’s colony is isolated
30: Send SRESPid:REJ:(S, remaining) to Path{id}
31: asked{id}{S} ← asked{id}{S} − remaining
32: end if
33: end if
34: for each Q : {(S, e)} ∈ RoutingList do
35: Send SREQid:[(S, e)]to Q // Send an SREQ for every element in RoutingList
36: end for
37: end case
38: end if

If the exhaustive search mode was used, then there are no other potential
servants in L’s colony but there may be some in other surrounding colonies.
Hence, we first determine the number of instances of S that need to be found
to fulfill the request.

If asked ≤ downstream+upstream (line 8), then there are enough poten-
tial servants in the colony or in surrounding colonies that have not replied
yet, to fulfill the request. Consequently, we simply wait for more replies
(line 10).

In contrast, if asked ≥ downstream + upstream, then we must look for
more potential servants in order to fulfill the request. There are (asked −
downstream−upstream) of them to be found (line 12). As said before, those
may only be found via a delegation to the leader L. Hence, the latter is sent
a request for the remaining instances of S, if possible, (line 15), or a rejection
is sent back to the original sender of the request (line 18). The upstream or
asked counters are updated accordingly (lines 14 and 17).

www.manaraa.com

Improving Resource Discovery in the Arigatoni Overlay Network 105

If the selective search mode is used, then there may be other potential ser-
vants in P’s colony. The process is the same as in Algorithm 1, except that we
do not consider children that have already been sent a request (line 21, 23).
For that purpose, we use the SendList that was originally created by the Fil-
ter function (during the processing of the original service request message),
and produce another RoutingList with the Route function (line 24).

Finally, we proceed as in Algorithm 1 (lines 25 − 36).

4 Protocol Evaluation

The actual Arigatoni’s topology is tree-based with routing complexity of O(logN)
(N being the number of nodes). However, in each GB, an extra complexity is due
to solve the matching equation between the service request and the routing
table T containing the mapping between peers and resources (this complexity is
usually linear in the size of S).

To assess the effectiveness and the scalability of the protocol, we have con-
ducted simulations using large numbers of units and service requests. For lack
of space, we only present the results that correspond to the new features of the
protocol, namely, the possibility to specify multiple instances of a service.

We have generated a network topology of 103 GBs, using the transit-stub
model of the Georgia Tech Internetwork Topology Models package [18], on top
of which we added the Arigatoni overlay network.

We take 120 distinct services, and we define the overlap interval 1≤L≤120,
as the interval of indices inside which services match each other. That is, for all
(i, j) ∈ L2, Si and Sj match. If L=120, then all services match each other; if L=1,
then each service only matches itself. At each GB, we added a random number
of GCs chosen randomly between 0 and 100.

To simulate subscription load, we then randomly registered at each GC each
service with a probability ρ denoting the global availability of services. We then
randomly raised 50, 000 service requests per GC. Each request contained either
a certain number of instances I of a service, chosen uniformly at random.

Each service request was then handled by the new RDP V2, described in this
paper. We used a service acceptance probability of α=75%, which corresponds
to the probability that a GC receiving a request for a service S (and offering S),
accepts to serve it.

Upon completion of all the requests, we measured for each GB its load as
the number of requests (messages) it received. We then computed the average
load as the average value over the population of GB s in the system. We also
computed the maximum load as the maximum value of the load over all the GBs
in the system.

Similarly, we computed the average and maximum load fractions as the av-
erage and maximum loads divided by the number of requests. The average load
represents the average load of a GB due to the completion of all the requests.
The average load fraction represents the fraction of requests that a GB served, on

www.manaraa.com

106 R. Chand, L. Liquori, and M. Cosnard

average. The maximum fraction represents the maximum fraction of the requests
that a GB served.

We computed the average service acceptance ratio as follows. For each GC,
we computed the local acceptance ratio as the number of service requests that
yielded a positive response (i.e. the system found at least one GC), over the num-
ber of service requests issued at that GC agent. A service request that contained
multiple instances of a service counts as a positive response only if the system
found as many GCs as the number of instances specified in the request.

We then computed the average acceptance ratio as the average value over
the number of GC (that issued at least one service request). We repeated the
experiments for different values of ρ, L and I. Results are illustrated in Figures 1
and 2. The algorithm V2 was implemented in C++.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

R
at

io
 (

%
)

I

Avg. load fraction ρ=200
Avg. load fraction ρ=1200
Max. load fraction ρ=200

Max. load fraction ρ=1200

(a)

 0

 2

 4

 6

 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100

A
vg

. l
oa

d
fr

ac
tio

n
(%

)

M
ax

. l
oa

d
fr

ac
tio

n
(%

)

L

Avg. load fraction ρ=200
Avg. load fraction ρ=1200
Max. load fraction ρ=200

Max. load fraction ρ=1200

(b)

Fig. 1. Average and maximum load fraction w.r.t. (a) number of instances of a service
in service requests (b) overlap interval

Figure 1(a) shows the evolution of the average and maximum load fraction
w.r.t. the number of instances of a service in service requests. Unsurprisingly,
we observe that asking more instances of a service in a service request requires
much more resource from the system. Indeed, for each instance, the system tries
to find a different GC capable of providing the service. We observe that low-level
GBs participate more, since there are more delegations. For values of I of circa 3
for ρ=0.02, and circa 6 for ρ=0.12%, the average and maximum load fractions
stabilize. For values of I higher than those values, there are not enough resources
in the system to completely fulfill the request (i.e., not enough GCs capable of
providing the requested service).

Figure 1(b) illustrates the evolution of the average and maximum load frac-
tions w.r.t. the overlap interval L. Unsurprisingly, we observe that the more
services match, the smaller the load imposed to the system. Indeed, for a given
requested service, there are more potential candidates capable of providing a
resource that satisfies it. For high enough values of L, the load stabilizes, and
the resources are found very quickly (most often at the nearest GB).

www.manaraa.com

Improving Resource Discovery in the Arigatoni Overlay Network 107

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

ρ (x10-6)

Avg. acceptation ratio

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

I

Avg. acceptation ratio ρ=201
Avg. acceptation ratio ρ=1236

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60

L

Avg. service accept ratio ρ=15
Avg. service accept ratio ρ=25

Avg. service accept ratio ρ=200

(c)

Fig. 2. Average success rate (shown in the Y Axis in %) w.r.t. (a) service availability
(b) number of instances (c) overlap interval

Figure 2(a) shows the average success rate w.r.t. the service availability ρ. Un-
surprisingly, the average service acceptance ratio increases exponentially with the
availability of services. This shows that Arigatoni is efficient in searching indi-
viduals for requested services. Indeed, a service availability of ρ=0.06% enables
the system to achieve an acceptance rate of 90%.

Figure 2(b) shows the evolution of the success rate w.r.t. the number I of
instances of S in a service requests. We observe that the average success rate
decreases with the increasing of I and eventually stabilizes to 0%. This is due to
the fact that the more instances we ask, the less GCs can be found to fulfill the
request.

Figure 2(c) shows the average success rate w.r.t. the overlap interval L. We
observe that the success rate increases with L, and eventually stabilizes to 100%
at for higher values of L. This is due to the fact that the more services match,
the higher the number of GCs capable of providing a resource that satisfies a
given request.

5 Related Work and Conclusions

Many technologies, algorithms, and protocols have been proposed recently on
resource discovery. Some of them focus on Grid or P2P oriented applications,
but none of those targets the full generality of Arigatoni which only deals with
generic resource discovery for building an overlay network of global computers,
structured via a virtual organization of variable topology and clear distinct roles
between leader and individuals (GCs or subcolonies).

Discussion on Closest Overlay Architectures (from [1]). The main challenges
of pervasive computing are how to build an overlay network with respect to its
topology, and how to route queries and discover resources.

There are essentially in the literature many basic types of overlays: structured
(tree, ring or grid), unstructured, hybrid overlays (a combination of the two
above), and multi-layer (or n-layer) overlays. Arigatoni falls in the latter category
that is widely used in many P2P systems.

www.manaraa.com

108 R. Chand, L. Liquori, and M. Cosnard

In a nutshell, in a n-layer overlay network, the responsibility assigned to
Individuals differs (think of the different roles and responsibilities of GBs and
GCs), since there are super-peers (GBs) serving as a server for a subset of all
peers. Ordinary peers (GCs) submit queries to their super-peers and receive
results from it. Super-peers are also connected to each others as ordinary peers
(Individuals), routing messages over the overlay network, submitting, delegating,
and answering queries on behalf of their peers (in their colony) and themselves.
This structure is replicated recursively, creating a n-layer topology, where some
peers become super-peers with decreasing responsibilities.

Typical issues of n-layer overlays are the size of each colony, together with the
interests and the resources offered and demanded in each colony. Typical bottle-
necks of n-layers are reliability and service availability (related to few points of
failure) and load balancing. Classical solutions to cope with these problems are
adding redundancy at the broker-layer. Historically, the n-layer topology gener-
alizes the two-layer topology, such as the one we can find in the hierarchical DHT
of Canon [12] and Coral [11].

Discussion on Closest Technologies. The Globus toolkit [13], is an open-source
set of technology, protocols and middleware, used for building Grid systems and
applications. Possible applications range from sharing computing power to dis-
tributed databases in a heterogeneous overlay network, where security is seri-
ously taken into account. The toolkit includes stand-alone software for security,
information infrastructure, resource management, data management, communi-
cation, fault detection, and portability.

The analogies with the Arigatoni model are in the Community Scheduler
Framework component and the Web Service Grid Resource Allocation and Man-
agement of the toolkit concerning the resource discovery, and the Globus Tele-
operations Control Protocol to allow units to cooperate (analogy with our ad
hoc protocol). However, Globus does not target the full generality of Arigatoni,
thanks to its generic, resource discovery algorithm that can be also suitable for
pervasive compiting in addition to pure Grid-oriented applications.

Promoted by Sun, the JXTA [15] technology is a set of open peer-to-peer pro-
tocols that enable any device to communicate, collaborate and share resources.
After a peer discovery process, any peer can interact directly with other peers.
Hence, the overlay network of peers induced by the JXTA technology is flat.

Moreover, the main concern of the Arigatoni is the design of protocols for
generic resource discovery, and intermittent participation, while the main con-
cern of the JXTA technology is to offer some tools to implement a P2P model.

In addition, the Arigatoni focuses on the evolution/devolution of colonies and
the mechanism of resource discovery, while JXTA technology allows peers to
communicate using an already existing overlay network of peers. Arigatoni’s aim
is the dynamicity of the overlay network while JXTA’s is the freedom of con-
nectivity between peers. Finally, peers in the JXTA architecture come with their
proper JXTA-ID (logical JXTA peers addressing) while Arigatoni relies on the
more conventional IP addresses.

www.manaraa.com

Improving Resource Discovery in the Arigatoni Overlay Network 109

Pub/sub [10] is a communication paradigm for asynchronous dissemination of
information. Consumers subscribe to the system (typically called the Notification
Service) to specify the type of information that they are interested in. Producers
publish data to the system. The notification service disseminates the data to all
(if possible) the consumers that are interested in receiving it, according to the
data and the interests declared by the consumers.

Many pub/sub systems have been developed recently, such as XNet [8,7],
Siena [4] or IBM Gryphon [2]. In [14], the authors propose to adapt the Siena pub-
lish/subscribe system to achieve Gnutella-like resource discovery. Their work re-
sembles ours in the sense that Arigatoni is also inspired by the pub/sub paradigm.
However, in [14], resource discovery is achieved by publishing queries to the no-
tification service. In contrast, Arigatoni implements its own resource discovery
algorithm, especially designed for generic and scalable resource lookup.

Conclusions. In this paper, we describe the V2 of the Arigatoni’s generic resource
discovery protocol. The first version RDP V1 permitted to ask for one service
at the time. The new improved protocol RDP V2 presented in this paper allows
for multiple instances, the latter point being a non-trivial improvement. Other
main achievements are the complete decoupling between the different units in
the system, and the encapsulation of resources in local colonies, which enable
Arigatoni to be potentially scalable to very large and heterogeneous populations.

The reliability of the RDP V2 itself, although desirable, is of lesser importance,
given the fact that service provision is not guaranteed at all in Arigatoni (indeed
it is not a requirement). In other words, when a GC issues a service request,
it is possible that no individuals are found for some of the services included in
the request. This happens, for example, if those services have not been declared
by any GCs in the system, or if all the GCs that have declared themselves as
potential individual refuse to serve them.

However, at the cost of memory and bandwidth requirements, it is still possible
(future work) to implement reliable resource discoveryby using a reliable transmis-
sion protocol (e.g. TCP), an applicative acknowledgment scheme in combination
with a retransmission buffer, and persistent data storage, and leader’s replication.

The subscription mechanisms of classical tree-based pub/sub systems [7,5,4]
can be used for the maintenance and update of consistent routing tables. Fur-
thermore, as for the reliability of subscription advertisement, we can adapt the
reliability mechanisms described in [8] to allow Arigatoni to be fault-tolerant or
to adapt to dynamic topology changes due to the intermittent participation of
individuals [9].

We are currently still improving Arigatoni with several new features, such as
the possibility to embed services in strong conjunctions (i.e., the services in a
strong conjunction should be provided by the same GC). We are also working on
the implementation of a real prototype and the subsequent deployment on the
PlanetLab experimental platform [16], and/or on GRID5000, the experimental
platform available at the INRIA [17].

As part of our ongoing research, we are also working on a more complete
statistical study of our system, based on more elaborate statistical models and

www.manaraa.com

110 R. Chand, L. Liquori, and M. Cosnard

realistic assumptions, as well as the possibility to include some hierarchical DHT
in addition to the routing tables. The possibility to change the Arigatoni topology
from a hierarchical tree to a graph is also intriguing.

Acknowledgment. We would like to thank Luc Hohwiller for a careful reading of
the paper, and the anonymous referees for the very useful comments.

References

1. AEOLUS. Deliverable D2.1.1: Resource Discovery: State of the art survey and
Algorithmic Solutions, 2006. http://aeolus.ceid.upatras.gr.

2. G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and D.C.
Sturman. An efficient multicast protocol for content-based publish-subscribe sys-
tems. In Proc. of ICDCS, 1999.

3. D. Benza, M. Cosnard, L. Liquori, and M. Vesin. Arigatoni: A Simple Pro-
grammable Overlay Network. In Proc. of John Vincent Atanasoff International
Symposium on Modern Computing, pages 82–91. IEEE, 2006.

4. A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-
Area Event Notification Service. ACM TOCS, 19(3), 2001.

5. R. Chand. Large scale diffusion of information in Publish/Subscribe systems. PhD
thesis, University of Nice-Sophia Antipolis and Institut Eurecom, 2005.

6. R. Chand, M. Cosnard, and L. Liquori. Resource Discovery in the Arigatoni Over-
lay Network. In I2CS: International Workshop on Innovative Internet Community
Systems, volume LNCS. Springer, 2006. To appear. Also available as RR INRIA
5928.

7. R. Chand and P. Felber. A scalable protocol for content-based routing in overlay
networks. In Proc. of NCA, 2003.

8. R. Chand and P. Felber. XNet: A Reliable Content-Based Publish/Subscribe Sys-
tem. In SRDS 2004, 23rd Symposium on Reliable Distributed Systems, 2004.

9. M. Cosnard, L. Liquori, and R. Chand. Virtual Organizations in Arigatoni. DCM:
International Workshop on Developpment in Computational Models. Electr. Notes
Theor. Comput. Sci., 2006. To appear.

10. P. Th. Eugster, P. Felber, R. Guerraoui, and A.M. Kermarrec. The many faces of
publish/subscribe. Computing Survey, 35(2):114–131, 2003.

11. M. J. Freedman and D. Mazières. Sloppy Hashing and Self-Organizing Clusters.
In Proc. of IPTPS, pages 45–55, 2003.

12. P. Ganesan, P. Krishna, and H. Garcia-Molina. Canon in g major: Designing DHTS
with Hierarchical Structure. In Proc. of ICDCS, 2004.

13. Globus Alliance. Globus Home Page. http://www.globus.org/.
14. D. Heimbigner. Adapting publish/subscribe middleware to achieve gnutella-like

functionality. In Proc. of SAC, pages 176–181, 2001.
15. JXTA Community. JXTA Home Page. http://www.jxta.org/.
16. Planet Lab Consortium. Planet Lab Home Page, 2006. http://www.planet-lab.

org/.
17. The Grid 5000 Consortium. Grid 5000 Home Page, 2006. http://www.grid5000.

org/.
18. E.W. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an Internetwork.

In Proc. of INFOCOM, 1996.

http://aeolus.ceid.upatras.gr
http://www.globus.org/
http://www.jxta.org/
http://www.planet-lab.org/
http://www.planet-lab.org/
http://www.grid5000.org/
http://www.grid5000.org/

www.manaraa.com

Improving Resource Discovery in the Arigatoni Overlay Network 111

A The Filter and Route Algorithms

Algorithm 4. Filter(S, Pfrom)
1: for each entry T [S′] = [(Pk, nk)]k=1...C in T do
2: if S′ matches S then
3: for each j ≤ C such that Pj �= Pfrom do
4: SendList{id}{S}{Pj} ← SendList{id}{S}{Pj}+ nj// (Pj , m) becomes (Pj , m + nj)
5: end for
6: end if
7: end for
8: return SendList{id}{S}

Filter builds the SendList corresponding to service S (and interaction with
identifier id), i.e., the list of P’s children that are potentially capable of serving
S. The function parses all the services in the routing table accordingly.

Algorithm 5. Route(Pfrom, S, n, search mode)
1: remaining ← n
2: RoutingList ← ∅
3: for each (Q, f) ∈ SendList{id}{S} do
4: if Q = Pfrom or Q = Path{id} then
5: continue // Go to next iteration in loop
6: end if
7: case search mode is

“exhaustive” :
8: if n ≥ f then // More instances asked than offered
9: Insert Q : (S, f) in RoutingList

10: remaining ← remaining − f
11: downstream{id}{S} ← downstream{id}{S} + f
12: Remove (Q, f) from SendList{id}{S}
13: else // More instances offered than asked
14: Insert Q : (S, n) in RoutingList
15: remaining ← 0
16: downstream{id}{S} ← downstream{id}{S} + n
17: f ← f − n
18: end if
19: “selective” :
20: if remaining ≥ f then // More instances asked than offered
21: Insert Q : (S, f) in RoutingList
22: remaining ← remaining − f
23: Remove (P, f) from SendList{id}{S}
24: else // More instances to offer than asked
25: Insert Q : (S, remaining) in RoutingList
26: f ← f − remaining
27: remaining ← 0
28: end if
29: if remaining = 0 then // No more instances to treat
30: break // Break loop
31: end if
32: end case
33: end for
34: return (RoutingList, remaining)

Route builds RoutingList, i.e., the list of neighbors that will be sent a particular
service, according to the selected search mode; it has the form {(Pi:(S, ni))}i=1...h

that is neighbors Pi will receive a request for ni instances of S. The function also
returns the remaining instances for which no servant has been found.

www.manaraa.com

An Effective Multi-hop Broadcast in Vehicular

Ad-Hoc Network

Tae-Hwan Kim, Won-Kee Hong�, and Hie-Cheol Kim

Department of Information and Communication Engineering,
Daegu University, Gyeong-San, Gyeong-Buk, 712-714, Korea

{thkim76, wkhong, hckim}@daegu.ac.kr

Abstract. Multi-hop broadcast protocols in vehicular ad-hoc network
(VANET) require more prompt message dissemination than traditional
broadcast protocols because they mainly deal with vital data involved in
driver safety. In this paper, a time reservation-based relay node selection
algorithm is proposed in order to achieve immediate message dissemi-
nation. All nodes in the communication range of a relay node randomly
choose their waiting time within a given time-window. The time-window
range is determined by a distance from a previous relay node and a
reservation ratio of the time-window. A node with the shortest waiting
time is selected as a new relay node. The experimental results show that
the proposed algorithm has a shorter end-to-end delay time than the
distance-based relay node selection algorithm no matter how node den-
sity varies. In particular, when the node density is low, the proposed
algorithm has a 25.7% shorter end-to-end time and a 46% better perfor-
mance in terms of the compound metric than the distance-based relay
node selection algorithm.

Keywords: Vehicular Ad-hoc Network, Multi-hop Broadcast,Inter-
vehicle Communication, Data Dissemination.

1 Introduction

Vehicular Ad-hoc Network (VANET) is temporarily established through a wire-
less connection between moving vehicles without any additional infrastructures
like MANET[1]. However, when compared to MANET, VANET has several char-
acteristics such as frequent changes of network topology, node1 density, high
mobility and frequent network fragmentation[2]. Therefore, the traditional net-
work protocols cannot be directly applied to VANET since these characteristics
are not considered. In VANET, it requires directional message dissemination be-
cause the nodes move along the road. In addition, rapid message dissemination
should be guaranteed by broadcast protocols in VANET since it mainly deals
with vital data involved with driver safety.

� Corresponding author.
1 Node stands for vehicles in this paper.

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 112–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

An Effective Multi-hop Broadcast in Vehicular Ad-Hoc Network 113

The message dissemination schemes for VANET can be categorized into
flooding-based[3], cluster-based[4], table-based[5] and distance-based[6] broad-
cast methods. The flooding-based broadcast scheme has excellent message ar-
rival rates even with a high mobility of nodes, but when the node density grows,
the bandwidth consumption is dramatically increased. The table-based and the
cluster-based broadcast schemes can lead to reduced level of performance if there
are increasing control message exchanges between the nodes. The distance-based
broadcast scheme has better performance than other schemes in VANET as it
has less network traffic and an end-to-end delay. In this scheme, the relay node
that has the role of delivering messages is selected by the distance-based relay
node selection (DBRS) algorithm. The chosen relay node with the shortest wait-
ing time is located at the border of the transmission range of the previous relay
node. However, the relay node takes a longer waiting time, if it is selected among
nodes that are not placed at the border of the transmission range in the low node
density network. Consequently, the end-to-end delay is lengthened because the
relay nodes have to waste some time untill the waiting time expires.

In this paper, we propose a time reservation-based relay node selection (TRRS)
algorithm. It has shorter end-to-end delay time and is desirable regardless of the
node density. TRRS uses a time-window. The size of the maximum time-window
is inversely proportional to the distance from the previous relay node. In TRRS,
a part of the time-window is reserved so that the farthest node from the previous
relay node is to be selected as the next relay node with the shorter waiting time
than itself. Each node within transmission range of a relay node randomly chooses
its waiting time within the given time-window range. The time-window is longer
than the reserved time range and shorter than the maximum time-window. To
avoid multiple reception of broadcasting messages of nodes in the broadcast re-
gion, TRRS prevents a node, which received many duplicate broadcast messages
from previous relay nodes, to be selected as the next relay node. The nodes that
have duplicate broadcast messages have a higher reservation ratio of the time-
window. Therefore, the farther the node from the previous node is, the narrower
the time-window. This means that a node farther from the previous relay node is
selected as the next relay node because it can take a shorter waiting time within
a narrowed time-window than the closer nodes. TRRS can minimize end-to-end
delay time because it takes a shorter waiting time than DBRS even though the
nodes are located far from the border of a transmission range with a low node
density. The experimental results show that the broadcast protocols using TRRS
have a shorter end-to-end delay time than the distance-based broadcast protocol
using DBRS regardless of the node density. In particular, when the node density
is low, TRRS has a 25% shorter end-to-end delay time and a 46% better perfor-
mance than DBRS in terms of the compound metric.

This paper is organized as follows. Section 2 introduces the related work.
The TRRS algorithm is explained in section 3. The result of the experiments
and performance evaluation is described in section 4. Finally, section 5 contains
concluding remarks.

www.manaraa.com

114 T.-H. Kim, W.-K. Hong, and H.-C. Kim

2 Related Work

As shown in Table 1, VANET has several characteristics which are different
from MANET. There are frequent changes of node density and network topol-
ogy, high mobility and frequent network fragmentation. Due to these charac-
teristics, the communication link between nodes is frequently broken and it is
difficult to disseminate messages to neighboring nodes effectively. Hence, we can-
not expect that the network protocols proposed for MANET will operate well
for VANET[1][2]. Moreover, the performance of the multi-hop routing algorithm
for MANET declines over 3 4 hop in VANET[7]. That is because the lifetime of
the communication link between nodes is very short and the end-to-end delay
and the network traffic are increased by increasing control message exchange for
a new routing path discovery. The routing path discovery is mainly established
by the flooding scheme. However, the flooding causes high bandwidth consump-
tion and a long end-to-end delay like broadcast storm problem[8] if the node
density is high. To improve the performance of the network protocols proposed
for VANET, it is necessary to equip the effective message dissemination protocol
with a short end-to-end delay and low network traffic.

Table 1. Comparison of MANET and VANET

Item MANET VANET
Mobility Low (walking speed) High(up to 200km/h)
Cost of Production Cheap Expensive
Network topology change slow Fast and frequent

Node density sparse dense and frequently vari-
able

Transmission range of nodes up to 100m up to 500m

Bandwidth several hundreds kps several thousands kbps

Life time of nodes Depending on power re-
source

depending on vehicle’s life
time

Computation capability 8∼16 bit CPU Over 32 bit CPU

Addressing scheme Attribution-based address-
ing

Location-based addressing
or Unique ID

Ability of multi-hop routing Available (Depending on the
scale of local network)

Weakly available (Depend-
ing On node density and lim-
ited to 3∼4 hop)

Reliability medium Very high

Position acquisition Triangulation using RSSI
and ultra sonic GPS, RADAR and Vision

Moving patter of nodes (speed
and direction) Too random Mostly regular

Lots of broadcast protocols for VANET are found in the literature as shown in
Figure 1. They can be classified into four categories based on the roles of nodes
and the relay node selection methods such as flooding-based, cluster-based, table-
based and distance-based broadcast schemes. Most of these protocols assume
that vehicles can ascertain their positions from the GPS.

The flooding-based scheme tries to suppress the number of re-broadcasting
nodes but still has heavy network traffic and long delivery latency because of

www.manaraa.com

An Effective Multi-hop Broadcast in Vehicular Ad-Hoc Network 115

Fig. 1. Broadcast protocols for VANET

the broadcast storm problem. The representative flooding schemes are I-IBA[3],
DOLPHIN[9].

The cluster-based broadcast scheme divides the road into several clusters and
selects a cluster head among nodes within a cluster. Only the cluster head is
eligible to disseminate messages. This scheme performs well when changes in
network topology is minimal. However. it suffers from heavy network traffic and
a long latency time in high node mobility since it is necessary to reorganize the
member of a cluster and to reelect a cluster head more frequently. SIMCOMM[4],
CBLR[10] are the cluster-based broadcast schemes.

In the table-based broadcast scheme, every node in the network maintains a
list of neighbor nodes that is periodically updated through a query-reply mech-
anism. The relay node is determined by the previous relay node. This scheme
provides better performance in terms of network traffic and end-to-end delay
when the nodes are moving slowly. However, if the network topology changes
frequently, the performance declines sharply and thus, it is not suitable for a
network which exhibits high node mobility. When node mobility increases, the
period of control message exchange between the nodes gets shorter which wastes
network bandwidth and increase end-to-end delay. The table-based broadcast
schemes are TRADE[5], OAPB[11], and UMB[12].

The distance-based broadcast scheme allows only one node to be involved at a
time in relaying a broadcast message to decrease network traffic and end-to-end
delay. The DBRS is a representative relay node selecting algorithm in distance-
based broadcast scheme. The relay node is determined by the distance from the
previous relay node. In other words, every intermediate node in transmission
range of the previous relay node is eligible to re-broadcast a message and has
to hold the messages for a given waiting time before re-broadcasting it. The
waiting time is computed by the distance from the previous relay node. Because
the waiting time of a node is different from one another, only the node with
the shortest waiting time is assured of re-broadcasting the message. The farther
the node from the previous relay node, the shorter is the waiting time. There-
fore, the closest node to the border of the transmission range of the previous
relay node is selected as the next relay node. There are DDT[6], RBM[13] and
ODAM[14] in the distance-based broadcast protocol. If a relay node is a border
node, the shortest waiting time will be spent so that the lowest network traffic

www.manaraa.com

116 T.-H. Kim, W.-K. Hong, and H.-C. Kim

and the shortest end-to-end delay time can be guaranteed in the distance-based
broadcast protocol. The border node means a node that is placed at the border
of transmission range of a previous relay node. However, that is not always the
case. If a relay node is not at the border, it will hold back the message unnec-
essarily for a longer time because the waiting time is determined only by the
distance. Especially, in case of low node density, this often happens.

3 Time Reservation-Based Relay Node Selecting
Algorithm

As mentioned in section 2, the relay node in DBRS is determined only by the
distance from the previous relay node. Figure 2 illustrates the DBRS, where
ni stands for an intermediate node within transmission range of the previous
relay node. If n1, n2 and n3 are located at a distance d1, d2 and d3 from the
previous relay node, each of them has to spend its given waiting time inversely
proportional to the distance from the previous relay node before disseminating
a message. The waiting time, denoted by DWTi, of an intermediate node is
represented by the following equation:

DWTi = DWTmax × (1 − di/R) (1)

where di is a distance between an intermediate node and the previous relay node,
DWTmax is the maximum predetermined waiting time and R is the transmission
distance of the relay node. According to the equation (1), the best performance
is given only when all relay nodes are located at the border of the transmission
range of the previous relay node. However, each relay node cannot be guaranteed
to be at the border in the VANET, if it is not in the very high node density. If a
relay node is not at the border, it has to spend a given waiting time wastefully.
Consequently, this algorithm is very simple, but the overall end-to-end delay time
is increased because the waiting time is blindly determined by the distance.

Fig. 2. Distance-based relay node
selection

Fig. 3. Time reservation-based relay node
selection

www.manaraa.com

An Effective Multi-hop Broadcast in Vehicular Ad-Hoc Network 117

We propose a new relay node selection algorithm, called TRRS, to achieve
low end-to-end delay time as well as low network traffic in the VANET. This
approach is similar to the DBRS in that the waiting time for re-broadcasting is
based on the distance from the previous relay node. In the TRRS, however, a
relay node can choose its waiting time in a given time-window so that a relay node
which is not at the border is allowed to have the waiting time of the border node.
As shown in Figure 3, the intermediate nodes, n1, n2, and n3 have maximum
time-windows that are inversely proportional to the distance from the previous
relay node t1, t2 and t3, respectively. Each node reserves a proportional time
period rt1, rt2 and rt3 in the given time-windows in order to let the relay node
that is farther from the previous node with a shorter waiting time be selected
next. Therefore, the range of the time-window τi is greater than rti and lower
than or equal to ti. Each node has a time-window τi with a different lower limit
and upper limit and it randomly takes the waiting time within the given time-
window range. Thus, the waiting time of an intermediate node in TRRS is always
lower than or equal to the one in DBRS. It means that the TRRS can reduce
the unnecessary time spent by a relay node. In the worst case, it may happen
that a node close to the broadcasting node has a shorter waiting time than the
remote one. However, the rate is very low because the closer nodes have a wider
range of time-window than the remote ones. Therefore, closer node’s possibility
of selecting a shorter waiting time is relatively low in comparison to the remote
one.

Figure 4 illustrates the worst case scenario that may happen in TRRS and
its prevention scheme. To avoid the worst case scenario in TRRS, the node
that has many duplicated message receptions has a higher reservation ratio of
the time-window. In other words, when the node is closer to the previous relay
node, it will receive more duplicated message from previous relay nodes than
other intemperate nodes. Therefore, the node that is closer to the border of
the transmission range and has a few duplicated message reception is selected
as the next relay node in TRRS. As shown in Figure 4, let’s assume that the
original dissemination node RN1 has to broadcast a message to n4. It requires

Fig. 4. Prevention of worst-case scenario in TRRS

www.manaraa.com

118 T.-H. Kim, W.-K. Hong, and H.-C. Kim

multi-hop broadcasting because it cannot reach n4 by a single-hop and it needs
to disseminate messages by several relay nodes. In the worst case of TRRS, n1,
n2 and n3 are sequentially selected as the relay node like domino effect. In the
worst case, the cost to deliver a message to n4 includes 4 relay nodes and 11
packets. The enhanced TRRS (ETRRS), on the other hand, prevents a node
that has many duplicated message to be selected as a new next relay node. In
phase 2 in Figure 4, n2, in which the number of duplicated message receptions is
two, cannot achieve a shorter waiting time than n3 which has just one message
reception because the reservation ratio of the time-window of n2 is higher than
n3. Consequently, n2 cannot be selected as a next relay node of RN2. In this
case, 3 relay nodes and 8 packets are consumed and the costs are less than the
worst case. In this paper, if a node received a message only one time, it caused
the reservation ratio of the time-window to be under fifty percent and if over one
time, it caused it to be over fifty percent. In TRRS, the waiting time, DWTi of
an intermediate node can be defined as follows:

DWTi = {DWT : rti ≤ τi ≤ twmax}

rti = twmax × ρ, ρ(ci) =

{
0 ≤ ρ ≤ 0.5 c = 1
0.5 < ρ ≤ 1 c > 1

twmax = DWTmax × (1 − di/R)

(2)

where rti denotes the maximum reserved time-window which is a lower limit of
time-window τi, the reservation ratio of the time-window is ρ, the number of the
duplicated message receptions is c and a upper limit of time-window τi is twmax.

The TRRS requires every node to know the position of the original broad-
casting node as well as the previous relay node in order to compute its waiting
time. The information is contained in the broadcast message. The position of the
original broadcasting node is used to determine when the message relay should
be finished. As soon as it receives the broadcast message from the previous relay
node, an intermediate node within communication range checks if the message
is new. If not, the message will be discarded. Otherwise, intermediate node pulls
information about positions of the original broadcasting node and the previous
relay node out of a new broadcast message and obtain its positions from the GPS
receiver. Then, an intermediate node calculates the distance from the original
broadcast node and the distance from the previous relay node. An intermediate
node with the shortest waiting time based on the equation (2) is selected as a
new relay node. A new relay node changes the field of the previous relay node
position in the broadcast message with its position and then disseminates it. A
re-broadcasting message is no longer made when the broadcast zone exceeds the
predetermined dissemination range.

4 Performance Evaluation

In this section, to evaluate and analyze the performance of TRRS in VANET,
we conducted a simulation of the emergency warning service[14] which is one

www.manaraa.com

An Effective Multi-hop Broadcast in Vehicular Ad-Hoc Network 119

of the applications in VANET. The emergency warning service has to promptly
offer emergency warning messages (EWM) such as icy roads, falling rocks, fog,
construction, blind spots or vehicle accidents to vehicles within a risk zone. The
simulation parameters are presented in Table 2. It is assumed that all of the
nodes in the network can obtain their positions from GPS and use IEEE 802.11
DCF(Distribution Control Function) MAC. The length of EWM is 250 bytes
and it consists of four fields such as an original broadcasting node position, a
previous relay node position, a delivery range and emergency contents. We do
not consider lane change and the overtaking of nodes. The evaluation metric for
TRRS is the end-to-end (ETE) delay and the network traffic. The simulation
was performed one hundred times and all of the simulation results are average
values.

Table 2. Simulation paremeters

Network Environment Road Environment
Parameter Value Parameter Value
Transmission range 150 m Length of road 7 km
Packet length 250 bytes Width of a lane 3.6 m
Channel Bandwidth 2 Mbps Road Direction One way
propagation Delay of a packet 0.125 μs Number of lanes 3
Computation time 1 ms Average speed of node 100 km/h
DWTmax 10 ms Traffic density 13.33 vehicles/lane/km
EWM dessemination range 5 km Length of a vehicles 4m

Table 3 shows the network traffic and the end-to-end delay time of TRRS
when the reservation ratio of the time-window varies. The experimental result
shows that when the reservation ratio of the time-window is 50%, it had the
lowest network traffic and when the ratio is 0%, it shows the shortest end-to-end
delay time. The Compound metric is a function of the end-to-end delay time
and the network traffic. However, when the reservation ratio of the time-window
is 10%, it had better performance in terms of the compound metric than any
others. Because of the higher reservation ratio of the time-window, the network
traffic rate becomes lower; but it cannot have the shortest waiting time due to
the narrowed time-window range. In this section, when the reservation ratio of
the time-window in TRRS is zero percent, it is denoted as RBRS(Range Based
Relay node Selection). The the reservation ratio of time-window in TRRS and
ETRRS is ten percent.

We assumed that network fragmentation does not occur in this experiment.
When the informed rate reached over 97%, fragmentation increased only slightly.
The results of experiments at DBRS, RBRS, TRRS and ETRRS show that the
relationship between the informed rate and the node density is almost the same.
Consequently, we conducted an experiment with node densities and transmission
ranges that shows 97% of the informed rate.

www.manaraa.com

120 T.-H. Kim, W.-K. Hong, and H.-C. Kim

Table 3. Efficiency of TRRS when the reservation ratio of the time window varies

Reservation ratio 0% 10% 20% 30% 40% 50%
Network traffic (Packets) 672 605 594 585 577 575
ETE Delay (ms) 61.421 62.061 65.438 68.495 70.596 73.992
Compound Metric 0.856 0.941 0.909 0.882 0.867 0.830

(a) Distance of relay nodes from the previous relay node

(b) Waiting time of relay nodes

Fig. 5. Distance and waiting time distribution of relay nodes

The distance from the previous relay node of each relay node and the waiting
time are presented in Figure 5, when the informed rate is 97% and the node
density is 18.33 vehicles/lane/km. The X-axis denotes the series of the relay
nodes in Figure 5 and Y-axis denotes the distance from the previous relay node
in Figure 5(a) and the waiting time of each relay node in Figure 5(b). As shown
in Figure 5. the relay nodes in DBRS are distributed closer to the border of the
transmission range of its previous relay node than other schemes because the
node that is located the farthest from the previous relay node is only selected
as the relay node. The waiting time of the relay nodes in DBRS indicates that
it is inversely proportional to the distance.

The average results of the experiments in Figure 5 are presented in Table 4.
DBRS has the longest waiting time although it indicates the lowest number and
the farthest distance of the relay nodes. RBRS shows the shortest waiting time

Table 4. Comparison of the number of relay nodes, waiting time and distance from
the previous relay node

DBRS RBRS TRRS ETRRS
Number of relay nodes 35 41 37 36.5
Waiting time(ms) 1.26 0.348 0.531 0.535
Distance(m) 131.09 112.95 123.64 125.32

www.manaraa.com

An Effective Multi-hop Broadcast in Vehicular Ad-Hoc Network 121

Fig. 6. Distribution of relay nodes by dis-
tance

Fig. 7. Distribution of relay nodes by
the number of received EWMs

and distance than any other node but has more relay nodes because the relay
nodes are widely distributed within the transmission range of the previous relay
node. On the other hand, TRRS and ETRRS have short waiting times as RBRS
and farther distance as DBRS. The ETRRS results are similar to those of TRRS
but ETRRS showed some better results in terms of the number of relay nodes
and the distance than TRRS because ETRRS prevents the worst case scenario.

Figure 6 describes the distribution of the relay nodes based on the distance
from each previous relay node respectively. In DBRS, 79.4% of relay nodes are
over 120m far from the previous relay node. On the other hand, 43.1% of the relay
nodes in RBRS are located within 120m because the node can be selected as the
next relay node even though it is not the farthest node from the previous relay
node. In TRRS and ETRRS, however, 69.5% and 70.8% of the relay nodes are
distributed over 120m because both of them can select the relay nodes that are
farther from the previous relay node by means of the time-window reservation. In
particular, the relay nodes in ETRRS are distributed more distantly than TRRS.
Since the nodes that have many duplicated message receptions are distributed
near to the previous relay node, ETRRS tries not to select these nodes as the
next relay node.

Figure 7 shows the distribution of the received EWMs of the relay nodes.
Each relay node in DBRS has only one message reception. Among the nodes
that have more than two duplicated message receptions, 8.4% of the relay nodes
are selected in RBRS and 2.3% in TRRS. ETRRS, however, shows 98.5% of the
relay nodes which are similar to those of DBRS and just 1.5% of the relay nodes
are selected among the nodes that have twice the number of duplicated message
receptions.

The number of the received EWMs of nodes in the network is presented in
Figure 8 as the node density varies. Ideally, the minimum number of receptions
is two because one is from the following node and the other is from the ahead
node. The experimental result shows that the number of the received EWMs
decreased scarcely when the informed rate is higher than 97%. This is because
the probability of its being located in the margin of the transmission range

www.manaraa.com

122 T.-H. Kim, W.-K. Hong, and H.-C. Kim

Fig. 8. The number of received EWMs of
nodes in the network

Fig. 9. The end-to-end delay time

increases. Consequently, the number of relay nodes is minimized when node
density is high, followed by lower number of duplicated EWM receptions. DBRS
indicates the lowest number of duplicated EWM receptions. RBRS is 17.8%
higher than DBRS. On the other hand, ETRRS is 12% lower than RBRS and
2.6% lower than TRRS, but 4.5% higher than DBRS.

Figure 9 illustrates the end-to-end delay time when the node density varies.
The end-to-end delay time slowly decreased when the node density increased be-
cause it required fewer relay nodes. The experimental result indicated that DBRS
showed the longest end-to-end delay time. RBRS, TRRS and ETRRS, on the
other hand, indicated a much shorter end-to-end delay time than DBRS regard-
less of the node density. When the informed rate was 97%, ETRRS had 25.7%
of the shorter end-to-end delay time than DBRS and was 1.7% and 0.7% longer
than RBRS and TRRS, respectively. For over 97% of the informed rate, however,

Fig. 10. Compound metric

www.manaraa.com

An Effective Multi-hop Broadcast in Vehicular Ad-Hoc Network 123

it had the shortest end-to-end delay time. The RBRS shows almost the same
result compared to TRRS and ETRRS even though it has the shortest waiting
time. The reason is that RBRS requires more relay nodes than the others do.

The result of the compound metric is presented in Figure 10 when the informed
rate is from 80% to 100%. ETRRS shows the highest performance regardless of
the node density and DBRS indicates the lowest performance. ETRRS is 47%
better than DBRS and 26% better than RBRS. The performance of TRRS and
ETRRS is almost the same, but ETRRS is 1 ∼ 1.7% better than TRRS under
the 97% informed rate.

In conclusion, DBRS shows the lowest network traffic, but a longer end-to-end
delay time than the others do. RBRS has a shorter waiting time than the others,
but higher network traffic because it requires more relay nodes than the others.
TRRS and ETRRS have better performance than the others because they have
the characteristic of having low network traffic which is similar to DBRS and
an end-to-end delay time as RBRS. ETRRS performs better than the TRRS
because it prevents the worst case scenario.

5 Conclusion

VANET is a temporarily established network through a wireless connection of
moving vehicles without the aid of infrastructure. It provides drivers with useful
traffic information as well as an extended range of awareness for safe driving.
Therefore, the network protocol for VANET should be designed with all the
characteristics because it has several challenges compared to MANET, such as
frequent changes of network topology and node density, high mobility, and fre-
quent network fragmentation. In particular, VANET requires a prompt message
dissemination protocol since it mainly deals with vital data involved in driver
safety.

In this paper, a TRRS algorithm is proposed to minimize the end-to-end delay
time for a prompt message broadcasting in VANET. In TRRS, an intermediate
node is allowed to have the maximum size of a time-window which is inversely
proportional to the distance from the previous relay node. A part of the time-
window is reserved for a node that is close to the border of the transmission range
of the previous relay node to be selected as the next relay node. The waiting
time of intermediate nodes within a communication range is randomly selected
within a given time-window range that is longer than the reserved time range
and shorter than the maximum time-window. To minimize multiple receptions
of a broadcast message, TRRS prevents the worst case scenario. A node that
has many duplicate broadcast messages has higher reservation ratio of the time-
window. It means that the node cannot take the shortest waiting time. Therefore,
the farthest node from the previous node has a higher probability to be selected
as the relay node than the closer nodes because it takes a shorter waiting time.
In addition, TRRS can minimize the an end-to-end delay even though the relay
nodes are not located at the border of the transmission range of a previous relay
node. The experimental results show that TRRS always has shorter end-to-end

www.manaraa.com

124 T.-H. Kim, W.-K. Hong, and H.-C. Kim

delay time than DBRS regardless of the node density, and it like DBRS has low
network traffic. Especially, when the node density is low, TRRS has a 25.7%
shorter end-to-end delay time and a 46% better performance than DBRS in
terms of the compound metric.

We believe that the proposed algorithm is also useful for a rapid routing path
discovery protocol as well as for a prompt emergency message dissemination
protocol in VANET.

Acknowledgment

This research was supported by the Daegu University Research Grant, 2006.

References

1. J.J. Blum, A. Eskandarian,L.J. Hoffman, ”Challenges of inter-vehicle ad hoc net-
works”, Intelligent Transportation Systems, IEEE Tran. on Vol. 5, Issue 4, pp.
347-351, Dec. 2004.

2. M. Torrent-Moreno, M. Killat, H. Hartenstein, ”The challenges of robust inter-
vehicle communications”, Vehicular Technology Conf. 2005. VTC-2005-Fall. 2005
IEEE 62nd Vol. 1, pp. 319-323, Sept. 2005.

3. S. Biswas, R. Tatchikou, F. Dion, ”Vehicle-to-vehicle wireless communication pro-
tocols for enhancing highway traffic safety”, Communications Magazine, IEEE Vol.
44, Issue 1, pp. 74-82, Jan. 2006.

4. M. Durresi, A. Durresi, L. Barolli, ”Sensor inter-vehicle communication for safer
highways”, Advanced Information Networking and Applications, 2005. AINA 2005.
19th Int. Conf. on Vol. 2, pp. 599-604, Mar. 2005.

5. S. Min-Te, F. Wu-Chi, L. Ten-Hwang, K. Yamada, H Okada, K. Fujimura, ”GPS-
Based Message Broadcasting for Inter-vehicle Communication”, Parallel Process-
ing, 2000. Int. Conf., pp. 279-286, Aug. 2000,

6. S. Min-Te, F. Wu-Chi, L. Ten-Hwang, K. Yamada, H. Okada, K. Fujimura, ”GPS-
based message broadcast for adaptive inter-vehicle communications”, Vehicular
Technology Conference, 2000. IEEE VTS-Fall VTC 2000. 52nd Vol. 6, pp. 2685-
2692, Sept. 2000.

7. M.M. Artimy, W. Robertson, W.J.Phillips, ”Connectivity in inter-vehicle ad hoc
networks”, Electrical and Computer Engineering, 2004. Canadian Conference on
Vol. 1, pp. 293-298, May 2004.

8. S. Ni, Y. Tseng, Y. Chen, J. Sheu., ”The Broadcast Storm Problem in a Mobile
Ad Hoc Network”, In ACM MOBICOM ’99, pp. 151-162, Aug. 1999.

9. K. Tokuda, M. Akiyama, H. Fujii, ”DOLPHIN for inter-vehicle communications
system”, Intelligent Vehicles Symposium, 2000. IVS 2000. Proceedings of the IEEE,
pp. 504-509, Oct. 2000.

10. R.A. Santos, R.M. Edwards, A. Edwards, ”Cluster-based location routing algo-
rithm for vehicle to vehicle communication”, Radio and Wireless Conference, 2004
IEEE, pp. 39-42, Sept. 2004.

11. H. Alshaer, E. Horlait, ”An optimized adaptive broadcast scheme for inter-vehicle
communication”, Vehicular Technology Conf., VTC 2005-Spring. 2005 IEEE 61st
Vol. 5, pp. 2840-2844, May 2005.

www.manaraa.com

An Effective Multi-hop Broadcast in Vehicular Ad-Hoc Network 125

12. K. Gokhan, E. Eylem, O. Fusun, O. Umit, ”Urban Multi-Hop Broadcast Protocol
for Inter-Vehicle Communication Systems”, Proceedings of First ACM Workshop
on Vehicular Ad-Hoc Networks (VANET 2004), pp. 76-85, Oct. 2004.

13. L. Briesemeister, G. Hommel, ”Role-based multicast in highly mobile but sparsely
connected ad hoc networks”, Mobile and Ad-Hoc Networking and Computing,
2000. MobiHOC. 2000 First Annual Workshop, pp. 45-50, Aug. 2000.

14. B. Abderrahim, ”Optimized Dissemination of Alarm Messages in Vehicular Ad-Hoc
Networks (VANET)”, High Speed Networks and Multimedia Communications 7th
IEEE Int. Conf., HSNMC 2004, LNCS Vol. 3079, pp. 655-666, 2004.

www.manaraa.com

Functional Knowledge Exchange
Within an Intelligent Distributed System

Oliver Buchtala and Bernhard Sick

Faculty of Computer Science and Mathematics – Institute of Computer Architectures
University of Passau, Innstrasse 33, 94032 Passau, Germany

oliver.buchtala@uni-passau.de, bernhard.sick@uni-passau.de

Abstract. Humans learn from other humans – and intelligent nodes of a dis-
tributed system operating in a dynamic environment (e.g., robots, smart sensors,
or software agents) should do the same! Humans do not only learn by communi-
cating facts but also by exchanging rules. The latter can be seen as a more generic,
abstract kind of knowledge. We refer to these two kinds of knowledge as “descrip-
tive” and “functional” knowledge, respectively. In a dynamic environment, where
new knowledge arises or old knowledge becomes obsolete, intelligent nodes must
adapt on-line to their local environment by means of self-learning mechanisms.
If they exchange functional knowledge in addition to descriptive knowledge, they
will efficiently be enabled to cope with a particular phenomenon before they ob-
serve this phenomenon in their local environment, for instance. In this article, we
present an architecture of so-called organic nodes that face a classification prob-
lem. We show how a need for new functional knowledge is detected, how new
rules are determined, and how the exchange of locally acquired rules within a
network of organic nodes leads to a certain kind of self-optimization of the over-
all system. We show the potential of our methods using an artificial scenario and
a real-world scenario from the field of intrusion detection in computer networks.

1 Introduction

Organic Computing [1] deals with the self-organization of complex technical systems
by means of self-optimization, self-configuration, self-healing, self-protection, or self-
learning capabilities. An example for such a complex technical system is an intelligent
distributed system, e.g., a team of robots, a smart sensor network, or a multi-agent sys-
tem. Often, the nodes of such a system have to perform the same or similar tasks, or
they even have to cooperate to solve a given problem. Typically, these nodes know
how to observe their local environment and how to react on certain observations, for
instance, and this knowledge is represented by (symbolic) rules. However, many envi-
ronments are dynamic. That is, new rules become necessary, old rules become obsolete,
or rules change slightly over time (concept drift). That implies that really intelligent
nodes (robots, smart sensors, agents, etc.) should adapt on-line to their environment by
means of certain machine learning techniques.

Typically, nodes exchange information about what they observe in their environment
in order to collaborate. We refer to this kind of knowledge as descriptive knowledge. We

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 126–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Functional Knowledge Exchange Within an Intelligent Distributed System 127

claim that the rules that are adapted or learned on-line (we call this functional knowl-
edge) are more abstract and often more valuable than descriptive knowledge! Further-
more, in the case of a dynamic environment descriptive knowledge may be inadequate
or even wrong to describe novel or changing phenomena. That is, a phenomenon in
the input space of one node might be misinterpreted by another node when the mod-
els that represent functional knowledge are different, for instance. Therefore, organic
nodes should exchange functional knowledge instead of or in addition to descriptive
knowledge (cf. Figure 1). Other advantages are obvious:

– Techniques and ontologies needed for functional knowledge exchange are indepen-
dent from a particular application domain,

– The communication effort needed for functional knowledge exchange may be sig-
nificantly lower than the effort needed for descriptive knowledge exchange, and

– Organic nodes may behave proactively: Before certain situations come up in their
local environment, they will already be enabled to handle them.

What is seen in

a node's local

environment?

observations

(descriptive

knowledge)

communication

x-pos = 20.5
y-pos = 13.2
type = ball

(a) Robots exchange descriptive knowledge
that describes what is seen in their local en-
vironment (conventional approach).

communication

learned

rules

(functional

knowledge)

How is

the local

environment

observed?

How does a node

react on certain

observations?

If x is low and x is high
1 2

then Class 1 is 0.9 and Class 2 is 0.1

(b) Robots exchange functional knowledge that
describes how to interpret these observations
and how to react (novel idea).

Fig. 1. A team of robots as an example for knowledge exchange applications: Robots decide
autonomously when, with whom, and what kind of knowledge they exchange

Functional knowledge exchange is a completely novel idea and this article introduces
an architecture that realizes this kind of behavior in a distributed system for the very first
time. It should be seen as a kind of proof of concept, where many of the components will
be further improved in the future. Section 2 describes an architecture of an organic node
for functional knowledge exchange and the components we realized up to now, Section
3 provides some experimental results, and Section 4 summarizes the major findings and
gives an outlook to our future work.

2 Architecture for Functional Knowledge Exchange

In this section we discuss the main questions that have to be answered if an organic
node is going to be constructed. We introduce a generic architecture for such an organic
node and describe the components we realized so far.

www.manaraa.com

128 O. Buchtala and B. Sick

2.1 Research Issues and Related Work

If we think about how an organic node can be realized, we are facing many challenges:

1. Which machine learning paradigms for classification or regression, for instance,
can be utilized and how can these be trained on-line?

2. How can functional knowledge (in form of rules) be extracted, fused, and inserted
(i.e., exchanged)?

3. How can this exchange process be assessed (e.g., in terms of temporal effort or loss
of information)?

4. How can the quality, the novelty, the reliability, and the understandability (and in-
terpretability) of functional knowledge be assessed or even assured?

5. How do nodes assess their own knowledge and how is a need for functional knowl-
edge exchange created (self-awareness)?

6. How do nodes assess the competence of other nodes and how do they decide when
and with which other nodes they communicate to exchange functional knowledge
(environment-awareness)?

7. How can the emergent behavior of the overall system be measured in order to in-
vestigate advantages and possible risks (e.g., distribution of “wrong” rules)?

8. How does self-optimization due to functional knowledge exchange complement
other techniques, e.g., for exchange of descriptive knowledge?

It has already been mentioned that an approach which is comparable to functional
knowledge exchange does not exist so far. Therefore, we only can get indications for
answers to some of the questions from various fields. An appropriate machine learning
paradigm, for example, can be found in the area of Soft Computing [2]. There is also
some work on knowledge extraction in this field (see [3] for some references). Cluster-
ing methods can be taken from the field of Pattern Recognition [4]. The area of Data
Mining [5] aims at measuring the interestingness of knowledge (validity, novelty, inter-
pretability, etc.) [6]. However, new answers have to be found for most of the questions.

2.2 Architecture Overview

In our work, we are focusing on classification problems. That is, the rules we want
to exchange assign a certain area of the input space of a classifier to a certain class.
Depending on the classification result, certain reactions may be initiated.

The generic architecture of an organic node for functional knowledge exchange we
propose consists of three layers that reflect certain aspects of human behavior (see Fig-
ure 2): reaction, cognition, and social behavior (cf. [7]):

– The reaction layer works quite autonomously. Sensor data are acquired from the
environment, the data are classified, responses are triggered depending on the clas-
sification result, and the environment is controlled by means of actuators.

– The cognition layer realizes a certain kind of consciousness: The organic node
must be aware of what he does know (or does not). This and other properties are
realized by the self-awareness component in cooperation with a rule management
component. Rules and classifiers are rated, e.g., with respect to validity or novelty.

www.manaraa.com

Functional Knowledge Exchange Within an Intelligent Distributed System 129

Controlled
Environment

Human
Experts

Other
Organic
Nodes

Environment
Awareness

CommunicationRule
Exchange

Social
Behavior Rule

Exchange
Communi-

cation
Environment-

Awareness

Cognition

Active Rules Extended Rule Base
Functional
Knowledge

Data Warehouse
Descriptive
Knowledge

Reaction
Active

Classifier
Response

Unit

Sensor Actor

Self-Awareness

Novelty
Detection

Concept Drift
Detection

Obsoleteness
Detection

Rule Management

Prototype
Generation

Prototype & Rule
Assessment

Observed
Classifier(s)

Social
Behavior Rule

Exchange
Communi-

cation
Environment-

Awareness

Cognition

Active Rules Extended Rule Base
Functional
Knowledge

Data Warehouse
Descriptive
Knowledge

Reaction
Active

Classifier
Response

Unit

Sensor Actor

Self-Awareness

Novelty
Detection

Concept Drift
Detection

Obsoleteness
Detection

Rule Management

Prototype
Generation

Prototype & Rule
Assessment

Observed
Classifier(s)

Fig. 2. Generic architecture of an organic node for functional knowledge exchange

These rules are active rules as well as rules self-created by the organic node or
received from other nodes (extended rule base). Also, rules can be adapted on-
line by means of training mechanisms. A database of specifically selected data is
provided for that purpose (data warehouse for active learning). In contrast to the
active classifier at the reaction layer, the observed classifiers at the cognition layer
comprise rules that are not actively used but only evaluated at the moment.

– The social behavior layer enables the organic node to interact with other nodes and
with human experts. Human experts are needed to label novel rules, if necessary.
The environment-awareness component is aware of the competence and needs of
other organic nodes. Based on information from the self-awareness component, the
rule exchange component decides together with the environment-awareness com-
ponent when, with whom, and which functional knowledge the node exchanges.
Appropriate mechanisms are provided by the communication component.

It should be mentioned, that this architecture resembles existing approaches to the de-
sign of adaptive systems such as the approaches described in [8,9], for instance.

In our current prototypical implementation of the organic node, the following com-
ponents are realized (detailed descriptions follow in the next section):

www.manaraa.com

130 O. Buchtala and B. Sick

– Active Classifier & Observed Classifier: The classifier paradigm is a modified
radial basis function (RBF) neural network that can be trained from data, Also,
interpretable rules can be extracted and inserted.

– Novelty Detector: The novelty detector notices missing functional knowledge in
the active classifier and causes further actions.

– Prototype Generation: This component uses a sliding window of recent data
points to create new rule prototypes (premises). These prototypes are inserted into
an observed classifier containing the rules that are currently evaluated.

– Prototype & Rule Assessment: This component permanently rates the observed
classifier consisting of active rules and occasionally created prototypes or rules
received from other agents. Various measures are provided for that purpose.

– Rule Integration & Broadcasting: With this component, rules are sent to other
agents and fused with the set of active rules to build a new active classifier.

These different components are partly independent and their cooperation can be de-
scribed as follows: The active classifier being part of the reaction layer processes the
incoming data independently from the other components. The novelty detector observes
the active classifier and tries to detect novel concepts within the data. In the case novelty
is detected, it emits an order to the prototype generator which utilizes an on-line clus-
tering mechanism to determine new clusters. The prototypes can be seen as premises of
candidate rules that resolve the observed lack of functional knowledge. New prototypes
are delivered to the rule assessment entity to undergo further analysis. After a successful
evaluation, a rule prototype must be labeled by a human expert. Then, it is integrated
into the active classifier and sent to other agents. To allow a stable processing in the
reaction layer, the process of finding new rules is decoupled by introducing a secondary
model (observed classifier). This model includes the active rules as well as evaluated
rules. Several measures can then be applied to evaluate the observed classifier in order
to predict the influence of the intended changes to the active classifier. It should also be
emphasized that the human expert (who is simulated in our experiments) is involved in
a very efficient way: He or she does not label many data points but only a few new rule
prototypes.

2.3 Components of the Organic Node

In this section we describe the various components of our realization of an organic node.

Active Classifier & Observed Classifier: We define the radial basis function classifier
RBFFS (cf. [3,10]) as a hybrid system that can be seen as both, an RBF neural network
(NN) and a Mamdani-type fuzzy system (FS). With the following definition we gain
the advantages of two worlds: Trainability of NN and interpretability of FS. From the
viewpoint of a NN, the RBFFS may be defined as follows (cf. Figure 3):

1. The RBFFS has three layers of neurons: input UI , hidden UH , and output layer UO.
Feed-forward connections exist between UI and UH as well as between UH and
UO. A scalar weight (w(I,H)

(i,j) or w
(H,O)
(j,l)) is associated with each connection.

www.manaraa.com

Functional Knowledge Exchange Within an Intelligent Distributed System 131

2. The activation of each hidden neuron j ∈ U H is determined using a multivariate
Gaussian function:

a
(H)
j (k) def=

a′j(k)∑|UH |
m=1 a′m(k) + max{ε −

∑|UH |
m=1 a′m(k), 0}

, (1)

with

a′j(k) def= e

⎛
⎝−∑ |UI |

i=1

(w(I,H)
(i,j) −xi(k))2

r(i,j)
2

⎞
⎠

=
∏|UI |

i=1
e

⎛
⎝− (w(I,H)

(i,j) −xi(k))2

r(i,j)
2

⎞
⎠

(2)

and a user-defined parameter ε (typically with ε = 1
e , e being the base of the natural

logarithm), where k = 1, 2, ... denotes the number of the pattern and x(k) def=
(x1(k), . . . , x|UI |(k)) is the external input. The activation function is parameterized

by the weight vector w(I,H)
j

def= (w(I,H)
(1,j) , . . . , w

(I,H)
(|UI |,j)) and a parameter vector

rj
def= (r(1,j), . . . , r(|UI |,j)).

3. Each output neuron l ∈ UO computes its activation as a weighted sum:

a
(O)
l (k) def=

∑|UH |
j=1

w
(H,O)
(j,l) · a(H)

j (k) . (3)

The external output vector of the network, y(k) def= (y1(k), . . . , y|UO |(k)), consists

of the activations of output neurons, i.e. yl(k) def= a
(O)
l (k).

Note that with an abbreviation for univariate Gaussians a′j(k) def=
∏|UI |

i=1 ϕ(i,j)(k).

In the following, the ϕ(i,j) are called basis functions; w
(I,H)
(i,j) is the center of such a

basis function and r(i,j) is its radius. The vectors w(I,H)
j and rj describe an axes-

oriented hyperellipsiod in the input space of the RBFFS. Thus, w(I,H)
j can be regarded

as a center of a hyperellipsoidal cluster – big x in Figure 3(b) – and rj defines the shape
of the cluster – axes-oriented ellipses in Figure 3(b). The activation of a hidden neuron
describes the similarity between an input pattern x(k) and a center based on a matrix
norm (Mahalanobis distance measure with diagonal covariance matrix).

The parameters of an RBFFS must be determined by means of training algorithms
such as gradient-based techniques or clustering techniques in combination with meth-
ods for the solution of linear least-squares (LLS) problems (see, e.g. [11]). For an it-
erative training we use penalty terms (regularization technique) to enforce small radii
(weight decay) and to enforce normalized output weights in the interval [0, 1].

For a classification problem, each class is typically assigned its own output neuron
using an orthogonal representation of classes for training. A winner-takes-all approach
is used for the final decision on class membership.

From the viewpoint of FS we can say that we have defined an FS with |UI | input vari-
ables, |UH | rules, and |UO| output variables (here: classes). The membership functions
of the input variables correspond to the Gaussian basis functions of the hidden neurons,
singletons are used for the output variables. That is, a fuzzy rule j (j = 1, . . . , |UH |)
has the form

if x1 is ϕ(1,j) . . . and x|UI | is ϕ(|UI |,j) then y1 is w
(H,O)
(j,1) . . . and y|UO| is w

(H,O)
(j,|UO|).

www.manaraa.com

132 O. Buchtala and B. Sick

neuron j

neuron l
output vector

input vector

neuron i

UO

UH

UI

x(k)

w(i,j)

(I,H)

w(j,l)

(H,O)

y(k)

(a) Structure of a radial basis function neu-
ral network classifier.

-2 0 2

-2

0

2

x
1

low

high

x
2

low high

If x (k) is low and x (k) is high1 2

 then y (k) is 0.9 and y (k) is 0.11 2

If x (k) is high and x (k) is low1 2

 then y (k) is 0.2 and y (k) is 0.81 2

x

x

(b) Example of a classifier consisting of
two rules (|UI | = 2 and |UH | = 2).

Fig. 3. Radial basis function classifier

The conjunction of variables in the premise of a rule as well as the implications are
realized by the product operator. The sum operator is taken to combine the rules (i.e.,
we use sum-prod-inference). For defuzzification, the height method is applied. We like
to mention that the usage of other paradigms could be considered as well. Though, we
prefer the RBFFS due to the following reasons: Firstly, neural network training methods
can be applied for on-line adaptation (e.g., reinforcement learning). Secondly, inter-
pretable and even comprehensible rules can be extracted (without loss of performance).
The usage of rules with Gaussian premises is motivated by the generalized central limit
theorem: Processes with multi-causal origination tend to be normally distributed.

Novelty Detector: The task of this component is to detect possibly novel phenomena
within the incoming data and to decide whether new rule prototypes should be created.
We defined the RBFFS paradigm in a way such that we can use it for novelty detec-
tion, too. The additional normalization term in equation 1 indicates missing activation
in the active classifier. The following measure defines the so-called recognition factor
mrecognition for a time step k on a sliding data window of length l:

mrecognition(k) def=
1
l

∑k

k−l+1
1 − max{ε −

∑|UH |
m=1

a′m(k), 0} . (4)

A novel concept is assumed to exist if the value of this measure sinks under a pre-
defined threshold ϑnovelty. To avoid creating new prototypes while there exist proto-
types that are already being evaluated, the decision is based on the novelty measure for
a secondary (observed) classifier.

Prototype Generation: To determine rules in a dynamically changing environment,
on-line mechanisms are necessary. Under the assumption that the measured data origi-
nate from Gaussian processes, this task can be solved by simple clustering algorithms.
Conventional algorithms such as c-means have to be parametrized with the number of
clusters [4]. Here we utilize a simple strategy that tends to produce too many prototypes.

www.manaraa.com

Functional Knowledge Exchange Within an Intelligent Distributed System 133

More appropriate methods will be applied in the future, e.g., techniques from informa-
tion theory that determine an appropriate number of clusters automatically (cf. [12]).

The following algorithm is executed on demand using a window of the most recent

l data points Xl(k) def= {x(j)|j ∈ k − l + 1..k}. Thus, it can be seen as an on-line
clustering algorithm.

1. Randomly choose an initial set of centers C(0) with uniform distribution and prob-
ability p from Xl(k). Set j := 0. Set the set of barycenters C := ∅.

2. Find the next barycenter for each initial center c(0)
i ∈ C(0):

(a) For each c(j)
i ∈ C(j) determine the set of k nearest neighbors kNNi with an

Euclidean distance measure. Then extend kNNi: kNNi := kNNi ∪ c(j)
i .

(b) Compute the mean c̃(j+1)
i := 1

k

∑
x∈kNNi

x.

(c) For each c̃(j+1)
i find the pattern x̃(j+1) ∈ kNNi with minimal Euclidean dis-

tance to c̃(j+1)
i .

(d) Set c(j+1)
i := x̃(j+1).

(e) Add all centers c(j+1)
i that did not change to C and the others to C(j+1).

(f) If C(j+1) �= ∅, set j := j + 1 and continue with Step 2a.

3. Remove redundant barycenters (barycenters that are included several times) from C.
4. Run a modified c-means clustering algorithm (cf. the algorithm we introduced in

[11]) starting with the barycenters in C.
5. Create rule prototypes with centers w(I,H)

j (cluster means) and radii ri (empiri-
cal standard deviations) resulting from that clustering. Ignore the prototypes that
correspond to already existing active rules.

The chance to find the actual cluster centers with Step 2 is very high. Of course, this
technique is prone to produce suboptimal results, particularly in sparse data areas which
are not close to actual cluster centers. However, corresponding prototypes can easily be
detected due to the sparseness of the assigned data.

Prototype & Rule Assessment: In a dynamically changing environment the assess-
ment of rules should have some dynamic behavior as well. That is, it only makes sense
to integrate an offered rule when currently data is observed that could be classified by
the evaluated rule. To achieve such a functionality, it is necessary to have a certain mem-
ory ability. We introduce the following mechanism which is inspired by Markov chain
theory (see, e.g., [13]).

An evaluated rule j is assigned a fitness value fj ∈ R. Measured data points cause
a movement within this interval. Good evaluations increase the fitness, bad evaluations
decrease it. Once the fitness value reaches one of the interval boundaries, the corre-
sponding rule is either accepted (fj ≥ 1) or discarded (fj ≤ 0). By default, a rule is
assumed to be discarded and, therefore, the fitness value generally must tend to sink.
This is controlled by a parameter 1 > λpenalty > 0. Good evaluations of rule measures
can compensate the penalizing effect and even increase the fitness. This is controlled by
a parameter 1 > λreward > 0 (typically, λreward > λpenalty). The evaluation of a rule j
can be described by the following algorithm:

www.manaraa.com

134 O. Buchtala and B. Sick

1. Initially, set fj(k) := 0.5.
2. For each observed pattern x(k + 1):

(a) fj(k + 1) := λreward · fj(k) − λpenalty.
(b) If fj(k + 1) ≥ 1 accept the rule.
(c) If fj(k + 1) ≤ 0 discard the rule.

Currently, we apply two kinds of measures to evaluate rules: rule activation and
premise dissimilarity. The measure for rule activation is simply defined as the activa-
tion a

(H)
j of the hidden neuron in the corresponding classifier. The measure for premise

dissimilarity is based on the following similarity measure for multivariate Gaussian
functions (cf. [14,15]): The similarity of two univariate Gaussians ϕ(i,j) and ϕ(i,k) can
be determined geometrically. Let A and B be the areas under ϕ(i,j) and ϕ(i,k), respec-
tively. Then, the similarity is defined by:

sim(ϕ(i,j), ϕ(i,k))
def=

A ∩ B

A ∪ B
. (5)

Approximating the quadrature of a Gaussian using the logistic function, this measure
can be computed efficiently. To get a similarity measure for rule premises of two rules j
and k, this measure has to be extended to multivariate Gaussians. Under the assumption
of axes-oriented premises, this can simply be done by multiplying the similarities of the
univariate Gaussians:

sim(j, k) def=
∏|UI |

i=1
sim(ϕ(i,j), ϕ(i,k)) . (6)

The dissimilarity is then computed by

dissim(j, k) def= 1 − sim(j, k) . (7)

Rule Integration & Broadcasting: The rule integration process is right now simply
realized by inserting rules without further actions. In the future, further improvements
will be done, e.g., in order to keep the number of linguistic terms as low as possible. In
[3] we describe how this can be done in principle. Also, there are no special methods for
communication up to now – we broadcast the rules to a pre-defined set of neighbored
organic nodes. In the future, we will develop an environment-awareness component that
selects agents that are known to be interested in certain functional knowledge or that
are trusted, for instance (e.g., because they are known as being competent).

3 Experimental Results

In this section we present two scenarios that demonstrate the feasibility and and the ad-
vantages of the methods described in Section 2. The first is an artificial scenario, which
allows us to have full knowledge about the scenario’s dynamic (i.e., data with underly-
ing distributions). The second scenario is taken from the field of intrusion detection in
computer networks to show the applicability to a real-world problem.

www.manaraa.com

Functional Knowledge Exchange Within an Intelligent Distributed System 135

3.1 Artificial Scenario

In this experiment we simulate three agents (organic nodes) that measure and classify
data. Agent 1 will be confronted with a new situation (i.e., novel data), acquire new
functional knowledge (rules), and broadcast this knowledge to agents 2 and 3. Agent
2 will accept this knowledge and profit from that decision. Agent 3 will discard this
knowledge. In a nutshell, the experiment shows how agent 2 is enabled to handle a
certain situation before being directly confronted with a similar situation.

-4,0 -3,5-3,5 -3,0-3,0 -2,5-2,5 -2,0 -1,5 -1,0-1,0 -0,5-0,5 0,0 0,5 1,0 1,5 2,0 2,52,5 3,0 3,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

-4,0 -3,5-3,5 -3,0 -2,5 -2,0 -1,5-1,5 -1,0 -0,5 0,0 0,5 1,0 1,51,5 2,0 2,5 3,0 3,5 4,04,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

-4,0 -3,5-3,5 -3,0 -2,5 -2,0 -1,5-1,5 -1,0 -0,5 0,0 0,5 1,0 1,51,5 2,0 2,5 3,0 3,5 4,04,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

125 150150 175 200200 225 250 275 300 325 350 375 400400

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

Agent 1

-4,0 -3,5 -3,0 -2,5-2,5 -2,0 -1,5-1,5 -1,0 -0,5 0,0 0,50,5 1,0 1,5 2,02,0 2,5 3,03,0 3,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Active

Rules
125 150150 175 200 225 250 275275 300 325 350350 375 400

-0,1-0,1

0,00,0

0,10,1

0,20,2

0,30,3

0,40,4

0,50,5

0,60,6

0,70,7

0,80,8

0,90,9

1,01,0

1,11,1

Measures

Evaluated

Rules

-4,0 -3,5-3,5 -3,0-3,0 -2,5-2,5 -2,0 -1,5 -1,0-1,0 -0,5-0,5 0,0 0,5 1,0 1,5 2,0 2,52,5 3,0 3,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Agent 2

-4,0 -3,5-3,5 -3,0-3,0 -2,5-2,5 -2,0 -1,5 -1,0-1,0 -0,5-0,5 0,0 0,5 1,0 1,5 2,0 2,52,5 3,0 3,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Agent 3

125 150150 175 200200 225 250 275 300 325 350 375 400400

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

classification rate

classification rate

classification rate

recognition factor

recognition factor

recognition factor

Fig. 4. Phase 1: The three agents were initialized with three rules each (ellipses and diagonal
crosses in the first column). They measure data (small circles, triangles, and crosses in first and
third column) that can be classified with a high classification rate (upper curve in second column).
The recognition factors (lower curve in second column) are at an acceptable level, too.

The data are generated utilizing Gaussian mixture distributions and – depending on
the underlying five Gaussians – assigned to one of three classes.

Agent 1 is equipped with a novelty detection component using ϑnovelty = 0.4 as de-
cision threshold. The recognition factor is computed using a sliding window of 50 data
points. In the prototype generator, the probability is set to p = 0.1. The prototype eval-
uation is parameterized with λreward = 0.04 and λpenalty = 0.01 using the rule activa-
tion measure. Agent 2 and agent 3 both work on the same data starting with the same
initial classifier and they do not have a novelty detection and a prototype generation
component. The rule evaluation components are parameterized with λreward = 0.02
and λpenalty = 0.01. Agent 2 utilizes the premise dissimilarity measure, and agent 3
uses the minimum of the premise dissimilarity measure and the rule activation measure.

www.manaraa.com

136 O. Buchtala and B. Sick

-4,0-4,0 -3,5-3,5 -3,0-3,0 -2,5-2,5 -2,0-2,0 -1,5-1,5 -1,0-1,0 -0,5-0,5 0,00,0 0,50,5 1,01,0 1,51,5 2,02,0 2,52,5 3,03,0 3,53,5 4,04,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Active Rules
-4,0-4,0 -3,5-3,5 -3,0-3,0 -2,5-2,5 -2,0-2,0 -1,5-1,5 -1,0-1,0 -0,5-0,5 0,00,0 0,50,5 1,01,0 1,51,5 2,02,0 2,52,5 3,03,0 3,53,5 4,04,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Evaluated Rules Agent 1

275275 300 325325 350 375375 400400 425425 450450 475475 500500 525525 550

-0,1

0,00,0

0,10,1

0,20,2

0,30,3

0,40,4

0,50,5

0,60,6

0,70,7

0,80,8

0,90,9

1,01,0

1,11,1

classification rate

Measures

recognition factor

Fig. 5. Phase 2: Agent 1 measured data for which no appropriate rule exists (new phenomena) and,
therefore, the recognition factor decreased. Agent 1 decided to create five new rule prototypes
(ellipses with center crosses in third column) by means of an on-line clustering mechanism. Three
of these prototypes (on the left side) are rated quite low (arrows facing down) as only a few
data points activate these prototypes. The other two prototypes (on the right side) are rated high
(arrows facing up).

-4,0 -3,5 -3,0 -2,5-2,5 -2,0 -1,5-1,5 -1,0 -0,5 0,00,0 0,5 1,0 1,5 2,0 2,5 3,03,0 3,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Active

Rules
350 375 400 425 450450 475 500500 525 550550 575 600 625

-0,1-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

Measures

classification rate

recognition factor

-4,0-4,0 -3,5-3,5 -3,0 -2,5-2,5 -2,0-2,0 -1,5 -1,0-1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,53,5 4,0

-4,0-4,0

-3,5-3,5

-3,0-3,0

-2,5-2,5

-2,0-2,0

-1,5-1,5

-1,0-1,0

-0,5-0,5

0,00,0

0,50,5

1,01,0

1,51,5

2,02,0

2,52,5

3,03,0

3,53,5

4,04,0

Agent 1Evaluated

Rules

-4,0 -3,5 -3,0 -2,5-2,5 -2,0-2,0 -1,5-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,03,0 3,53,5 4,04,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

350 375 400 425 450450 475475 500 525 550 575 600600 625

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

recognition factor

classification rate

-4,0-4,0 -3,5-3,5 -3,0-3,0 -2,5 -2,0-2,0 -1,5-1,5 -1,0 -0,5 0,0 0,5 1,01,0 1,5 2,02,0 2,52,5 3,0 3,5 4,04,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Agent 2

-4,0 -3,5 -3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,00,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

350 375375 400400 425 450 475 500 525 550 575 600 625

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

recognition factor

classification rate

-4,0-4,0 -3,5-3,5 -3,0-3,0 -2,5 -2,0-2,0 -1,5 -1,0 -0,5-0,5 0,0 0,50,5 1,0 1,5 2,0 2,5 3,0 3,53,5 4,0

-4,0-4,0

-3,5-3,5

-3,0-3,0

-2,5-2,5

-2,0-2,0

-1,5-1,5

-1,0-1,0

-0,5-0,5

0,00,0

0,50,5

1,01,0

1,51,5

2,02,0

2,52,5

3,03,0

3,53,5

4,04,0

Agent 3

Fig. 6. Phase 3: Agent 1 accepted two of the rule prototypes (new ellipses with center crosses in
first column of agent 1) and asked a human expert to label them (i.e., to assign them to classes).
Then, agent 1 committed these new rules – i.e., they became active – and sent all rules to the
other agents (broadcasting mechanism). Afterward, the recognition factor and the classification
rate of agent 1 increased again. The other two agents received the new rules (ellipses with center
crosses in third column of agent 2 and agent 3) and they evaluate them (arrows in third column
of agent 2 and agent 3) using different measures: Agent 2 uses a premise dissimilarity measure,
agent 3 uses a combination of premise dissimilarity and activation measures.

The experiment is shown in Figures 4 – 8. Each figure corresponds to a certain phase
of the experiment (time step). The rows of the figures correspond to the different agents.
The first column shows the two-dimensional input space of the active classifier of the

www.manaraa.com

Functional Knowledge Exchange Within an Intelligent Distributed System 137

-4,0 -3,5 -3,0 -2,5 -2,0 -1,5-1,5 -1,0 -0,5 0,0 0,5 1,0 1,51,5 2,02,0 2,5 3,0 3,53,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,00,0

0,50,5

1,01,0

1,51,5

2,02,0

2,52,5

3,03,0

3,53,5

4,04,0

Active

Rules
375 400400 425 450450 475 500 525 550550 575 600600 625 650650

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

Measures

classification rate

recognition factor

-4,0-4,0 -3,5 -3,0-3,0 -2,5-2,5 -2,0-2,0 -1,5-1,5 -1,0-1,0 -0,5 0,0 0,5 1,01,0 1,51,5 2,0 2,5 3,0 3,5 4,04,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Evaluated Rules

Agent 2

-4,0 -3,5 -3,0-3,0 -2,5 -2,0-2,0 -1,5 -1,0 -0,5-0,5 0,0 0,5 1,0 1,5 2,02,0 2,5 3,0 3,53,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,00,0

0,50,5

1,01,0

1,51,5

2,02,0

2,52,5

3,03,0

3,53,5

4,04,0

375 400 425425 450 475475 500 525525 550 575 600 625 650

-0,1-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

classification rate

recognition factor

-4,0 -3,5 -3,0 -2,5-2,5 -2,0-2,0 -1,5 -1,0-1,0 -0,5 0,0 0,50,5 1,0 1,5 2,0 2,5 3,03,0 3,53,5 4,04,0

-4,0-4,0

-3,5-3,5

-3,0-3,0

-2,5-2,5

-2,0-2,0

-1,5-1,5

-1,0-1,0

-0,5-0,5

0,00,0

0,50,5

1,01,0

1,51,5

2,02,0

2,52,5

3,03,0

3,53,5

4,04,0

Agent 3

Fig. 7. Phase 4: Agents 2 and 3 show different behavior concerning the rating of observed rules
as they use different measures

-4,0 -3,5 -3,0 -2,5-2,5 -2,0-2,0 -1,5 -1,0 -0,5-0,5 0,0 0,50,5 1,0 1,51,5 2,0 2,52,5 3,0 3,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Active Rules
900 925 950950 975975 1.0001.000 1.025 1.0501.050 1.075 1.1001.100 1.125 1.1501.150 1.175

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

recognition factor

Measures

classification rate

-4,0-4,0 -3,5-3,5 -3,0 -2,5 -2,0 -1,5-1,5 -1,0 -0,5 0,0 0,50,5 1,0 1,51,5 2,0 2,5 3,0 3,5 4,04,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,00,0

0,50,5

1,01,0

1,51,5

2,02,0

2,52,5

3,03,0

3,53,5

4,04,0

Agent 2

Evaluated Rules

-4,0-4,0 -3,5-3,5 -3,0-3,0 -2,5-2,5 -2,0-2,0 -1,5-1,5 -1,0-1,0 -0,5-0,5 0,0 0,5 1,01,0 1,5 2,0 2,5 3,0 3,5 4,0

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,00,0

0,50,5

1,01,0

1,51,5

2,02,0

2,52,5

3,03,0

3,53,5

4,04,0

900 925 950 975 1.0001.000 1.0251.025 1.0501.050 1.0751.075 1.1001.100 1.1251.125 1.1501.150 1.1751.175

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

classification rate

recognition factor
-4,0-4,0 -3,5-3,5 -3,0-3,0 -2,5-2,5 -2,0-2,0 -1,5-1,5 -1,0-1,0 -0,5-0,5 0,0 0,50,5 1,0 1,51,5 2,0 2,5 3,0 3,53,5 4,0

-4,0-4,0

-3,5-3,5

-3,0-3,0

-2,5-2,5

-2,0-2,0

-1,5-1,5

-1,0-1,0

-0,5-0,5

0,00,0

0,50,5

1,01,0

1,51,5

2,02,0

2,52,5

3,03,0

3,53,5

4,04,0

Agent 3

Fig. 8. Phase 5: Agent 2 and agent 3 now also measure data in an area of the input space for which
appropriate rules were provided by agent 1. Agent 2 is able to classify the data correctly, whereas
agent 3 is not.

respective agent with the 40 most recent data points and the active rules. Rules are sym-
bolized by a level curve of the corresponding Gaussian (ellipse) and the position of the
center (big x). The class assignments of rules and data points are indicated by different
line and symbol types. The second column depicts the classification rate of the active
classifier and the recognition factor for novelty detection. The third column shows again
the two-dimensional input space and the data points. If applicable, currently observed
rules are drawn here. The rating of these evaluated rules is indicated by the direction
(between up and down) of thick arrows originating at the rule centers (e.g., ↑: very
good, ↓: very bad, →: undecided). It must be kept in mind that the agents do not see the
class labels of measured data or their own classification rate. This information is only
provided in the figures for a better understanding of the agents’ behavior.

www.manaraa.com

138 O. Buchtala and B. Sick

-3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0
-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Dict

150 200 250 300 350 400 450 500 550 600
0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

classification rate

recognition factor

Fig. 9. Misuse detection: The left graph shows the rules (centers shown as diagonal crosses,
ellipses illustrate the shape of the rules). The right graph displays the classification rate and the
recognition factor. In this first phase of the scenario data arrives that can be well recognized (i.e.,
only Dict and non-attack). The classification rate is high and the recognition factor is about 0.6.

3.2 Intrusion Detection – Combination of Misuse and Anomaly Identification

Exactly the abilities set out in our experiment in Section 3.1 are needed in a distributed
intrusion detection system (IDS), for instance. Intrusion detection aims at recognizing
and preventing network- or host-based intrusions in computer systems. In large, dis-
tributed IDS – as the one we set out in [16] – a single node (local IDS) uses signatures
of known attacks (misuse detection), but it also must be able to detect anomalies (from
our viewpoint: novelty) which might indicate variants of attacks or new attack types.
Prototypes of new rules must be created and system administrators must be asked to
label those rule prototypes (to identify the new attacks). Then, the prototypes can be
broadcasted in the distributed IDS. Thus, other nodes will be enabled to handle these
new attacks before they are confronted with them.

The potential of the proposed mechanism for novelty detection can be shown using a
simple scenario composed of two similar attacks, Dict and Guest. With Dict, an attacker
aims at gaining access by guessing different username/password combinations. This
process may use a large, pre-defined dictionary. Guest is a variant of Dict that tries to
get access without passwords or with weak passwords. For the experiment we use data
from a DARPA intrusion benchmark set which contains about 140 features that were
extracted from TCP/IP packet header information [17]. Here, a feature selection was
conducted and two appropriate features (uncorrelated and with high information gain)
were selected. A data scenario has been constructed using 650 patterns from the Dict set
randomly mixed with 650 non-attack patterns. After that, 360 patterns from the Guest
set (containing duplicates) have been mixed with 360 non-attack patterns. These data
are concatenated to build a sequential scenario to simulate a first phase where a Dict
attack occurs (here regarded as misuse) and a second phase with a Guest attack (here
regarded as anomaly). An RBFFS is initially created using the first 500 patterns only,
i.e., a misuse detector for the Dict attack is trained. After that, the remaining patterns
are processed without adaptation.

Figure 9 shows the RBFFS in the first phase (time step 600). The rules contained
in this network are displayed on the left side. The centers of the RBF which describe

www.manaraa.com

Functional Knowledge Exchange Within an Intelligent Distributed System 139

-3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0
-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Guest

650 700 750 800 850 900 950 1.000 1.050 1.100
0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

recognition factor

classification rate

Fig. 10. Anomaly detection: In this second phase (after about 800 time steps) no more Dict data
arrive, but patterns from the Guest set. The classification rate deteriorates as the new attack is
misclassified (labeled as Dict). The recognition factor decreases, too (now about 0.4). The Guest
patterns can be seen in the left figure (small triangles).

the premises of rules are displayed as diagonal crosses and their shapes are shown
as ellipses again. Additionally, the most recent 100 observed patterns are displayed
where small crosses denote non-attack patterns and circles represent Dict patterns. In
the right graph, the classification rate and the recognition factor are displayed. In this
phase, only patterns are observed that can be well recognized by the RBFFS and, thus,
the classification rate is high and the recognition factor is about 0.6. Figure 10 shows
the scenario at later time step (about 1100). At time step 800 the observation of Dict
patterns stopped and Guest patterns arrived. The classification rate deteriorates as the
patterns are misclassified (i.e., labeled as Dict). Simultaneously, the recognition factor
decreases to about 0.4. This shows how the recognition factor indicates the observation
of a novel phenomenon (anomaly). As this factor is computed without knowledge of
the correct class label, this experiment demonstrates the potential of the mechanism for
real on-line scenarios. In the case of the detection of an anomaly, it is possible to react
by informing a human expert or by generating a new rule prototype that must be labeled
by an expert.

4 Conclusion

In this article we demonstrated the exchange of rules within an intelligent distributed
system. By means of functional knowledge exchange, the overall system will be pro-
vided with extended self-optimization abilities. Up to now, we focused on various as-
pects of a future cognition layer of an organic node.

The techniques described here could and will be improved further. We will focus
on the self-awareness and the environment-awareness components of the organic node.
Additional measures for the assessment of classifiers and rules must be defined to detect
concept drift, for instance. New training techniques are needed to enforce the compre-
hensibility of rules and classifiers. We must improve the techniques for rule integra-
tion: Similar rules (or linguistic terms) must be fused (cf. [3]) to avoid that the num-
ber of rules increases permanently. Obsolete rules must be detected and deleted. Also,

www.manaraa.com

140 O. Buchtala and B. Sick

mechanisms for an active measurement of other nodes’ competence will be developed.
Additionally, based on assessments of the other nodes we will improve the current
broadcasting mechanism to reduce communication effort. Finally, we have to develop
methods for an assessment of the overall system’s emergent behavior (cf. [18]). That is,
we want to quantify the impact of functional rule exchange.

Furthermore, we plan to investigate our methods in the field of robotics, specifically,
soccer-playing robots. Compared to the intrusion detection application, it will be possi-
ble to create a self-optimizing system without any need of a human expert. Due to the
fact that the system’s success can be measured by means of available information (e.g.,
scoring is a success), automatically generated reinforcement signals could be applied
for training (reinforcement learning; see, e.g., [19]).

Acknowledgements

This work is supported by the German Research Foundation (DFG), grant SI 674/3-1.

References

1. Allrutz, R., Cap, C., Eilers, S., Fey, D., Haase, H., Hochberger, C., Karl, W., Kolpatzik, B.,
Krebs, J., Langhammer, F., Lukowicz, P., Maehle, E., Maas, J., Müller-Schloer, C., Riedl, R.,
Schallenberger, B., Schanz, V., Schmeck, H., Schmid, D., Schröder-Preikschat, W., Ungerer,
T., Veiser, H.O., Wolf, L.: Organic Computing – Computer- und Systemarchitektur im Jahr
2010. VDE/ITG/GI-Positionspapier (2003)

2. Zadeh, L.A.: What is soft computing? Soft Computing – A Fusion of Foundations, Method-
ologies and Applications 1(1) (1997) 1

3. Buchtala, O., Sick, B.: Techniques for the fusion of symbolic rules in distributed organic sys-
tems. In: Proceedings of the IEEE Mountain Workshop on Adaptive and Learning Systems
(SMCals/06), Logan. (2006) 85 – 90

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, Chichester,
New York (2001)

5. Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Pearson Education, Upper
Saddle River (2003)

6. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data mining:
Towards a unifying framework. In: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD 1996), Portland. (1996) 82 – 88

7. Mainzer, K.: Self-organization and controlled emergence. In Bellman, K., Hof-
mann, P., Müller-Schloer, C., Schmeck, H., Würtz, R.P., eds.: Organic Computing –
Controlled Emergence. Number 06031 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany (2006) (on-line:
http://drops.dagstuhl.de/opus/volltexte/2006/577).

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1) (2003)
41 – 50

9. Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner, F., Schmeck,
H.: Organic computing – addressing complexity by controlled self-organization. In: Proceed-
ings of the 2nd International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA ’06), Paphos. (2006)

http://drops.dagstuhl.de/opus/volltexte/2006/577

www.manaraa.com

Functional Knowledge Exchange Within an Intelligent Distributed System 141

10. Poggio, T., Girosi, F.: A theory of networks for approximation and learning. A.I. Memo No.
1140, C.B.I.P. Paper No. 31, Massachusetts Institute of Technology – Artificial Intelligence
Laboratory & Center for Biological Information Procesing – Whitaker College (1989)

11. Buchtala, O., Neumann, P., Sick, B.: A strategy for an efficient training of radial basis
function networks for classification applications. In: Proceedings of the IEEE-INNS Inter-
national Joint Conference on Neural Networks (IJCNN 2003), Portland. Volume 2. (2003)
1025 – 1030

12. Buchtala, O.: Transformation von Radialen-Basisfunktionen-Netzen in Fuzzy Systeme. Mas-
ter’s thesis, University of Passau, Department of Mathematics and Computer Science (2005)

13. Grinstead, C.M., Snell, J.L.: Introduction to Probability. 2 edn. American Mathemati-
cal Society, Providence (1997) (also available on-line: http://www.dartmouth.edu/∼ chance/
teaching aids/books articles/probability book/book.html).

14. Jin, Y., von Seelen, W., Sendhoff, B.: An approach to rule-based knowledge extraction.
In: Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1998),
Anchorage. Volume 2. (1998) 1188 – 1193

15. Jin, Y., von Seelen, W., Sendhoff, B.: Extracting interpretable fuzzy rules from RBF neural
networks. Internal Report 2000-02, Institut für Neuroinformatik (INF), Ruhr-Universität
Bochum (2000)

16. Buchtala, O., Grass, W., Hofmann, A., Sick, B.: A fusion-based intrusion detection architec-
ture with organic behavior. In: The first CRIS International Workshop on Critical Information
Infrastructures (CIIW’05), Linköping. (2005) 47 – 56

17. Hofmann, A., Horeis, T., Sick, B.: Feature selection for intrusion detection: An evolution-
ary approach. In: IJCNN 2004: Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks, Budapest. Volume 2. (2004) 1563 – 1568

18. Müller-Schloer, C., Sick, B.: Emergence in organic computing systems: Discussion of a
controversial concept. In Yang, L.T., Jin, H., Ma, J., Ungerer, T., eds.: Autonomic and Trusted
Computing, Proceedings of the 3rd International Conference ATC-06, Wuhan. Number 4158
in LNCS, Springer Verlag, Berlin, Heidelberg, New York (2006) 1 – 16

19. Merke, A., Riedmiller, M.: Karlsruhe Brainstormers – A reinforcement learning approach to
robotic soccer. In Birk, A., Coradeschi, S., Tadokoro, S., eds.: RoboCup 2001: Robot Soccer
World Cup V. Number 2377 in LNCS. Springer-Verlag, Berlin, Heidelberg (2002) 435 – 440

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html

www.manaraa.com

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 142 – 156, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Architecture for Collaborative Business Items

Till Riedel1, Christian Decker1, Phillip Scholl1, Albert Krohn1,
and Michael Beigl2

1 TecO, Universität Karlsruhe (TH), Vincenz Prießnitz Str. 3, 76131 Karlsruhe, Germany
{riedel,cdecker,scholl,krohn}@teco.edu

2 IBR, Universität Braunschweig, Mühlenpfordtstraße 23, 38106 Braunschweig, Germany
beigl@ibr.cs.tu-bs.de

Abstract. Sensor network technology is pushing towards integration into the
business world. By using sensor node hardware to augment real life business
items it is possible to capture the world and support processes where they
actually happen. Many problems of the business logic running our world can be
efficiently implemented “on the item”. In order for these smart items to couple
back to the virtualized world of business processes it necessary to design a
uniform system abstraction for enterprise systems. Service oriented
architectures are the tool to describe functionality apart from its concrete
implementation. This paper describes a system and the experiences made
integrating wirelessly networked smart business items into high-level business
processes.

Keywords: Wireless sensor networks, service oriented architecture, business
logic, distributed systems.

1 Introduction

The complex and interwoven business logic demands more and more information
sources to enable reliable, flexible and efficient processes. Information has become
one of the key values of today’s business world. At the same time technologies
emerge that can lead to a ubiquity of information sources. Especially sensor nodes are
a promising platform for enabling the digitalization of our environment. Augmenting
real life business items like goods or people with tiny wirelessly connected computing
and sensing platforms creates a broad range of possibilities.

However, the enormous amount of unfiltered information arising from a steadily
growing amount of sensors can soon become a problem of scalability. The need for
continuous evaluation of sometimes-unreliable information often contradicts the goal
of reliable, flexible and efficient business processes. We think that only integrating
sensor networks into business logic (as in [2]) will thus fall short of a scalable
solution. However, integrating business logic into sensor networks we believe can
become a future direction of computing systems.

The information processing capabilities of sensor networks can implement
business logic in a collaborative fashion without pushing unnecessary information to
backend systems.

www.manaraa.com

 Architecture for Collaborative Business Items 143

Fig. 1. Smart chemical drums equipped with sensor nodes

The following motivating scenario, for which we build a trial installation in a BP
chemical plant in Hull, UK, shall outline sensor network capabilities in the context
of business processes. In this example containers of chemical goods – the business
items – are equipped with wireless sensor nodes (see Fig. 1) in order to enforce pre-
defined storage conditions. The regulations are encoded in backend enterprises
systems as part of the workflow with the business items. However, the supervision on
the regulation is delegated to the business items themselves. In this scenario, the
nodes on the items communicate with each other and collaboratively supervise the
environment around the containers. Business logic on the nodes utilizes the sensor
information on presence on number of other containers, chemical content, and
environmental conditions, e.g. temperature, as input to collaboratively reason on
eventual violation of storage regulations. If detected, the nodes in this scenario are
able to warn locally by triggering a visual alert signal and report this incident back for
purposes of logging to a backend system. In contrast to technologies like Radio
Frequency Identification (RFID), the process on detection and enforcement is
completely distributed among the participating business items. This enables a
continuous, very accurate in-situ supervision with no additional information overhead
for back-end systems.

Sensor networks already have the means for executing such business logic (e.g.
in [1]). However, in order to ensure that backend end sensor network seamlessly
work together a technical framework is needed that provides interconnectivity
between sensor networks and server based enterprise systems. Both systems have
optimized ways of processing and communicating data. All assumptions about
increasing efficiency by combining both only hold if we don’t lose their original
efficiency along the path of integrating both systems. Based on the implementation
of the business logic of the smart drum scenario we show how efficient an
unwanted and potentially dangerous storage combination can be identified on item
level and how this can increase the reliability of systems where logic is coupled
with physical entities.

www.manaraa.com

144 T. Riedel et al.

In this paper we describe a service-oriented architecture for seamless integrating
business logic executed on sensor networks. The goal of the architecture is to delegate
parts of the business logic from resource intensive backend systems to thin sensor
node technology. In the next section we analyze the general structure of business
logic and the requirements for mapping them to sensor networks. Furthermore we
discuss the technical and structural challenges for an integrated architecture. We
continue describing a pragmatic architecture for enabling sensor supported business
logic, the CoBIs Gateway Architecture. It links services executing logic on top of the
sensor network through UPnP (Universal Plug and Play) proxies to the logic running
in backend systems. In the last section we present our experiences gathered while
applying this technology within a real world trial.

2 Analysis

A business process describes the transformation of resources in order to achieve a
measurable business relevant outcome. Business processes can be split into process
tasks, which can be delivered by different service providers. The sequence of such
tasks can e captured and modeled in so-called business logic.

The term business logic is used to distinguish the processing part from presentation
and storage within classical 3-tier architectures. The term “functional process logic”
might be a better term describing the same thing. Classical business logic is built on
top storage layer most commonly called CRUD (Create, Read, Update and Delete).
Because business logic components still share a lot of intimate knowledge about the
data layout CRUD layer parts of the reusability of business logic is often limited.
Services oriented architectures have recently been used to abstract from this rather
tight coupling to the data layer by defining functional interfaces across all
components.

In our view (see [3]) a service consists of a well-defined functionality and a well-
defined interface for accessing this functionality from a client. To distinguish the
service abstraction from others we demand that the client is independent of the
concrete implementation of the service and that the each service is independent
from the internals and the state of any other service. The discriminating factor of
service-oriented architectures is the loose coupling between services. This enables
exchanging functional entities and gives us the possibility to seamlessly integrate
new technology.

2.1 Collaborative Business Items

Business logic acts on a virtual representation of physical world. Every business item
that is part of a process is modeled to have an equivalent in the virtual world.
Business rules and workflows describe how to act on those objects. Business logic
often relies on user or machine interfaces to update their state according to the real
world process in parallel. The state between the real world and the virtual world is
thus only synchronized at certain checkpoints in space and time.

www.manaraa.com

 Architecture for Collaborative Business Items 145

Task

Relocated
 Task

Collaborative Business
Items

Business Logic Backend

Sensor Network

Fig. 2. Relocated business logic

Collaborative Business Items (CoBIs) push the interface between real world
processes and business logic out onto the business item itself (see Fig. 2). This allows
us close the gap between the virtual and physical world. Sensor nodes attached to
business item as the drums in the introductory example can directly act as service
providers. CoBIs add the following key capabilities normal business items (also
compare [3]):

- Computing
- Data Storage
- Monitoring
- Controlling
- Communication

Wireless sensor nodes such as the Berkley Motes [6], Ambient uNodes [7] or
Particle Computers [8] can be used as enabling platforms for embedding those
features into physical business items.

2.2 Logic on the Item

Functionality implemented on a single sensor node is subject to many constraints. For
instance, the micro-controller is often a resource-restricted 8-bit processing unit,
providing typically up to 512KB Flash memory for programs and only a small amount
(around 2KB) of RAM for volatile data.

However, in spite of the limited amount of data space and computation power on
sensor nodes, they can provide complex services to business applications by in
network collaboration. There are two key properties of business logic that can
compete with and outplay server-based alternatives.

The first is the distributability of business logic. Because business logic is item
related it can often be split on item level. The processing power then can scale linear
with the number of collaborative business items. While backend systems often need
complex strategies to scale with an always-increasing number and speed of inputs,
scaling is an intrinsic feature of sensor networks.

The second key property of most business logic is that it exposes a high locality
concerning their information working set. As an example matching storage
regulations against environmental conditions such as temperature or humidity can be

www.manaraa.com

146 T. Riedel et al.

done locally on a single node, as all input is available. At the same time the number of
possible matching regulations can be statically evaluated on item basis, so that the
logic actually executed on a single node only has linear time and space requirements.

We suggest that instead of only collecting sensor nodes should interpret data and
pass on results to the business logic. Executing the process logic close to the data
source decreases the amount of data that has to be processed by the backend system.
This results in less resource consumption for computation and communication and
can in turn increase the responsiveness and the scalability of the whole system
considering the amount of data that gets generated by a normal business process.

2.3 Architectures for Collaborative Business Items

Considering the growing number of sensor network platforms for services relevant to
business logic the backend systems would have to interface a number of different
sensor networks hosting different sensor types and using different data encoding.

Uniform service concepts for sensor networks have already been designed in the
past however they either see sensor networks only as a data source like [2] or at least
restrict the logic which is processed on the item to query statements [10]. Other
systems like [9] also suggest new service architectures for backend systems.

In contrast to this related work we see the challenge in fitting sensor networks into
existing business service architectures. Seeing a sensor networks as regular service
providers frees business developers from the need to develop proprietary connectors
and leaves sensor network technology the freedom of optimized implementations. The
coupling point between the two worlds is a service interface that has to be provided
by a collaborative item architecture.

3 Key Design Challenges

In this chapter we describe the key design challenges of a service-oriented
architecture (SOA) integrating collaborative business items.

3.1 Interfaces

Supporting standard RPCs to the services running on the nodes could lead to a
painless integration with backend systems. However, it can be shown that RPC is not
the right abstraction to directly support on sensor nodes (see [4]). RPC is very
restrictive about the calling semantics, which makes stub generation easy, but proves
to be inefficient for the communication requirements of sensor networks.

Data packets in sensor networks are often built in a way to support cross-layer
protocol optimizations. For this purpose the data is encapsulated in an efficient
encoding that can easily be parsed by the system. Because of different protocol stacks
and operating systems, this leads to very different presentations of structured
information in a packet. As an example the Particle platform use a tuple-oriented data
format enforcing strictly typed information. Motes use Active Messages allowing a
direct mapping to the component interfaces of TinyOS. A client would have to
support all different encoding in such a heterogeneous environment.

www.manaraa.com

 Architecture for Collaborative Business Items 147

Even if we can understand the message encoding, we will still fail to extract
sensible information from the data. If transport container and environment have both
humidity sensor embedded, it is not possible to make a statement about neither
absolute nor relative humidity, because both sensors will most likely have different
sensitivity or different resolutions.

The goal has to be that interfacing sensor network services are not more complex
than using backend services. All domain knowledge needed to understand interfaces
to sensor network services needs to be made explicit in standardized service
interfaces.

 If we acknowledge the necessity of proprietary protocol layers, this means that
sensor network messages need to convert to a uniform message encoding. We propose
the use of “active” service descriptions. Additional to the interface descriptions they
can contain information to generate transformation stubs implementing endpoints for
both sensor network and backend service communication.

3.2 Addressing

Besides interfaces, addressing can be identified as one of the most essential parts
about service interaction. It is closely coupled to topics like transport and routing,
which are also key elements of wireless sensor network research [12,13]. For us it is
important not to impose implications on concrete implementations of such protocols
and algorithms via the addressing scheme. From the application’s point of view,
however, a common method for addressing is necessary for a truly service-oriented
view on the network. Because the semantics of an address is determined by the
concrete implementation, we need means for address translation in our system.

Arbitrary resolving scheme can be applied to describe the different needs for
addressing. Like in a DNS system semantic hierarchies can be constructed across an
address space. Once resolved, the client can use the address to communicate with the
system hosting a service using the target address space.

In highly dynamical systems like item networks (in contrast to rather static sensor
networks) this generates consistency problems. To illustrate this we may think of a
temperature service in out smart drums scenario. Getting the temperature can easily
be executed on any sensor node in the network. Typically higher-level logic is,
however, not really interested in the temperature of some node A but in e.g. the
temperature at a location L. If node A is in location L we can nonetheless execute the
service there by resolving L to A. If node A physically moves, however, this leads to
an obvious problem when calling the service again.

Another kind of service mobility leads to the same problem: migrating a service to
a neighboring node. Once again the service cannot be reached using A’s address.
Those problems occur, because we once again replicated part of the service state
(namely the current host) in the backend system. Exactly this we stated as a problem
before, as now the problem is keeping virtual and physical world consistent.
Constantly requesting new addresses leads to an immense overhead on the network
traffic.

Once we also push the logic of matching a concrete address into the sensor
network, we see this problem disappear. An efficient implementation could e.g.
involve location-based routing algorithms. We can easily imagine other routing

www.manaraa.com

148 T. Riedel et al.

schemes. Therefore we propose to introduce service proxies in order to hide the
addressing information behind an IP-based addressing scheme. Those proxies
represent a “service running on an address”. This way we can avoid pushing the
routing functionality into the client.

3.3 Discovery

By saying that we map service addressing and interfacing to IP-based proxies we only
shifted the problem of service binding to IP technologies. However, the problem of
service discovery can be handled fairly efficient in those networks. Two main
approaches can be identified here: infrastructure-based and infrastructure-less
approaches.

An example of an infrastructure-based service binding and discovery approach is
described the Web Service Interoperability Standard, namely the UDDI registry
(www.uddi.org). Without going into detail about the specific up- and downsides of
specific discovery implementations, it can be said that infrastructure based approaches
are useful for rather static service landscapes and often have a broader scope than just
announcing functionality. They also may represent a bottleneck in a distributed
system or at least need special care to setup.

The service enabling of sensor networks should be a rather “plug-and-play”
oriented approach that simplifies the use of a specific technology and should not
generate additional infrastructure dependencies. For those purposes infrastructure-less
discovery seems to be the better choice. This kind of discovery either uses multicast
announcements and queries or distributed hash tables to announce services throughout
the network. Because service mapped to real world items via wireless interfaces can
easily disappear or appear, services may move with the nodes. Therefore
announcement-based discovery interfaces also provide monitoring functionality for
the liveliness of a service. Multicast announcements can provide a powerful means to
program dynamical business logic, that acts on the availability of a service and also
can take trigger necessary steps if a service is unavailable.

3.4 Lifecycle Management

The first thing to do if some logic fails to discover and bind necessary service
functionality is to try to deploy this functionality to the sensor network. Because
services can be mapped to multiple nodes within the network it makes sense to install
one lifecycle management interface per network. The whole sensor network acts as a
container for services.

Creating container interfaces for all service hosts would create the need to generate
proxies for all addressable entities. Those are not known beforehand, as they can be
arbitrarily defined. In order to solve this problem we use deployment descriptions that
can have the power of selection statements of any query language. Those descriptions
are used to instantiate the service on the target host generating a local proxy.
Addressing the service instance is implemented by the sensor network routing
services, thus the expressiveness of deployment description is also directly depended
on their addressing modes.

www.manaraa.com

 Architecture for Collaborative Business Items 149

We assume precompiled binaries called service executables as the input for the
sensor network, which are then passed to the single nodes. As stated before we are
totally agnostic about the implementation language and content of the service
executables. The lifecycle management service only needs a counter part on each
node in the network to forward the binary to. Once the deployment request was issued
it is left to sensor nodes to execute it and initiates a service instance. The success of
the deployment can be verified end-to-end using service discovery. Functions for
removal and temporary disabling of a service are added to the service interface of
each proxy.

4 CoBIs Gateway Architecture

In this chapter we describe our implementation of a service-oriented architecture for
enabling sensor networks to run business logic. The Collaborative Business Item
Gateway Architecture implements an UPnP to sensor network gateway. We chose the
Universal Plug and Play (UPnP) standard because of its lightweight, infrastructure
less and yet complete approach. The Standard includes the Simple Object Access
Protocol (SOAP), the Simple Service Discovery Protocol (SSDP) and the General
Event Notification Architecture (GENA). Because UPnP uses Internet technology it
can easily be included in most business applications. The implementation, however, is
not UPnP specific but can be easily ported to e.g. Web Services.

Business
Service

RPC/Event Interface

B
A

C
K

E
N

D
F

R
O

N
T

E
N

D

Network A

Service
Proxy

Network A
Proxy Factory

C
O

B
Is

 G
at

ew
ay

 A
rc

h
it

ec
tu

re

Network B

Network B
Proxy Factory

Service
Proxy

Gateway A Gateway B

Fig. 3. The CoBIs Gateway Architecture

Key element of this architecture is the dynamic instantiation of service proxies.
Proxies can be accessed like native UPnP devices, providing detailed service
descriptions for the implemented functionality. The proxy itself, however, only exists
as a virtual representation of the service interface. Request issued to the service proxy
are transformed by the gateway to sensor network messages and vice-versa. From the
backend the gateway itself is only visible for deploying new services to the sensor

www.manaraa.com

150 T. Riedel et al.

network. Multiple gateways can be instantiated simultaneously to include several
sensor networks into the architecture. The general architecture is depicted in Fig. 3.

4.1 Gateway Devices

The platform gateway is a application level bridge that handles all aspect of
communication with the backend system. This includes all protocol levels beginning
with the physical layer bridging from Ethernet to the wireless network ending with the
application level bridging for service interaction from proprietary interfaces to RPC-
style service interfaces. The idea of platform gateway is that it capsules all domain
knowledge needed for communication with a sensor network platform. Because the
interfaces to the backend system is always of the same type this allows exchanging
the platform as well as using multiple sensor network platforms in parallel.

Because we handle the platform gateway as a monolithic software component in
our architecture this does not mean that it is a single machine. The system has been
designed to be able to both different levels of bridging as well as proxies to different
services distributed on multiple machines. The only interface to the gateway from the
backend system is the lifecycle management service that enables pushing new service
binaries to the network.

This and all interfaces dynamically created service proxy are announced in the
network. UPnP handles Service discovery natively once a proxy is initiated. All proxy
instances provide a pointer to their description via GENA when requested by some
client. For the gateway this means that proxy services have to be instantiated
whenever a new service is provided by the sensor network and destructed when the
service becomes unavailable. The proxy service instance itself is a only dispatching
path associated with a SOAP request URL pointing to the gateway and a service
description including a the interface transformation (see below).

G a te w a y

A

he
llo

B

pi
ng

he
llo

C

C
_x

xx

D

S e rv ic e A S e rv ic e B S e rv ic e C S e rv ic e D

? _ *

de
pl

oy

in
st

an
tia

te

Fig. 4. Discovery methods supported by the gateway

Fig. 4 shows four means to initiate a service instantiation. They are provided by
Discovery Services running on the gateway and can be exchanged. In the first case the
gateway parses predefined “hello” and “bye-bye” packages (Fig. 4A). Querying
actively instructs all services to issue hello packets by sending broadcast pings (Fig.
4B). Passive discovery omits special hello packets completely by adding a service
identifier to all packets (Fig. 4C). Proxies can also be permanently installed on

www.manaraa.com

 Architecture for Collaborative Business Items 151

deployment, requiring manual removal (Fig. 4D). This however disables support for
liveliness monitoring.

4.2 Interface Transformations

We integrate the platform specific semantic transformation for the RPCs into the
XML-based UPnP service description. Because the UPnP demands flexible XML
parsing we can use the same description for providing the client description to the
control point. Leaving the transformations inside the descriptions allows easy
debugging of the transformations and allows the management services to analyze the
running system.

The descriptions are automatically parsed by UPnP stack implementation, which
already provides the UPnP RPC dispatching and eventing facilities. We integrate our
transformation logic into the device instantiation that is guided by the XML
description. This allows a direct coupling between transformation and interface.

We suggest a simple template-based transformation, we have successfully used for
creating interfaces for Particle Computers and Ambient uNodes. Templates work as
bi-directional transformation. Fig. 5 shows the model of the templates organized as an
ingress filter tree that is loosely connected via a listener pattern to the UPnP protocol
stack. When a RPC call is received each outgoing argument is serialized via the
template the UPnP state variable and incoming arguments are parsed by inverting the
process: the template is matched against the packet.

A template entry can be of three types of data, wildcard or don’t care. If a matching
template is found the information under the wildcards is extracted/serialized together
with any optional static data. UPnP typing information contained in the interface
description can be used for de- and encoding. This suffices for most standard integer
data, but the scheme can be extended to support more explicit interfaces without the
increasing message size. In cases more complex parsing is needed one may specify
platform specific extensions for message decoding.

Fig. 5. Mapping message templates of RPC arguments

www.manaraa.com

152 T. Riedel et al.

4.3 Message Primitives

We support seven message types for communication between sensor node services
and backend-based services that can be accessed via the RPC interface:

- Non-blocking Send, Receive and Call
- Blocking Send, Receive and Call
- Callback

The classification of blocking and blocking messages concerns the behavior on the
gateway not on the issuer as RPCs are always blocking. The non-blocking send can be
used if no return types are given. It sends out a message to the sensor network and
does not wait for an answer.

The non-blocking receive uses replicated services states on the proxy to answer the
RPC. Here no function argument can be provided to RPC. An example would be a
getTemperature action providing the most current temperature data. Caching data in
the gateway allows the services on the sensor node to run in a duty cycle without
loosing accessibility. The non-blocking call is a combination of the message types
described before. It does not wait for data to arrive, but returns cached data. It can be
used to signal the service that its data was received and consumed by the backend.
The blocking call can be used to implement real RPC for a service. It sends out data
and awaits an answer before returning. It can also be used to provide support for
acknowledged that means blocking sending support as well as blocking receive by
omitting either in or out parameters. For blocking operation we wait for a message
matching the associated return argument. Timeout values may be specified
individually for each function.

The callback provides support for a node service to asynchronously trigger the
Business Logic in the backend. An example would be an alerting service that needs to
result in rapid action within the backend. UPnP’s General Event Notification
Architecture (GENA) handles the callback subscription. Subscriptions are thus
handled by the gateway.

5 Real World Trial

The gateway implementation described above was installed for a one-month trial at
one of the BP’s largest acetyls production site. The trial was conducted in a
declassified storage area and included 21 chemical drums equipped with Particle
Computers. The goal was to model storage regulation of chemical substances stored
in two different stored with multiple storage locations inside the same store (see
Fig. 6).

We implemented logic for multiple types of storage regulation:

- per chemical storage limit
- incompatibility classes of chemicals stored in the same location
- environmental constraints (maximum/minimum temperature)
- maximum time in storage

The Business logic for the storage regulations was modeled in SAP’s EH&S
(Environment, Health and Safety) system. The system was used to parameterize a

www.manaraa.com

 Architecture for Collaborative Business Items 153

so-called hazardous goods service on the nodes. This service needed input from a
location service, which was implemented using a simple infrastructure-based infrared
location system. A temperature monitoring service gave input to check environmental
storage regulations. Additional management functionality (voltage, duty cycle) was
provided to manage the networks functionality from Smart Items Management
Console developed by SAP Research. The gateway software was run on two 200
MHz embedded Linux MIPS systems in combination with a with 2GHz Intel
Windows XP server also running the monitoring logic.

Fig. 6. Storage location enabled with Collaborative Business Items

0

50

100

150

200

250

300

350

400

450

Fig. 7. Message load per minute to backend system

5.1 Trial Evaluation

Surprisingly most of the problems encountered on site were related to technologies
not specific to our architecture. Using Internet technologies the hope beforehand was

www.manaraa.com

154 T. Riedel et al.

to seamlessly integrate into any existing network using those technologies. As BP
provided us with a wireless 802.11 based infrastructure we were able to connect our
gateways without the need of complicated wiring on site. Probably because of the
rather humid weather conditions close to the cooling towers the 802.11 network
showed a high packet loss at times. This packet loss did not very much affect TCP
traffic but unacknowledged traffic like UDP. UPnP uses UDP multicast as part of its
discovery scenes and also the DHCP based dynamic addressing for the gateways used
unacknowledged transport for discovery.

The logic pushed to the sensor network worked reliable. Additionally to the month
long trial we performed an extensive test set at the end of the trial to confirm the
correct behavior of the system. Both the business software running on an SAP
application server as well as the sensor network performed their services by
specification. The average message load to the business logic was only about 23
messages per minute (see Fig. 7), mostly resulting from voltage monitoring need for
the management application. We were however able to put our system into an
overload situation (right part of Fig. 7), when simultaneously generating alerts from
all business items. This was due to the GENA implementation of the used UPnP
stack, which set up new HTTP connections for each event and each subscription.

9:25 9:30 9:35 9:40 9:45

Alarm

h:m

nodes in Location A

Fig. 8. Delayed issuing of alarm action

Only functions carrying state changing configuration information actively injected
messages into the sensor network. All other services running on the nodes ran
autonomously, only actively communicating to the backend system on events
subscribed by the business logic. This scheme made the reactions of the sensor
network especially in critical situations very robust as the message load was in some
sense predictable within the system and message prioritization could be decided
within the node network. This at times (due certain amount of message loss in
unacknowledged traffic) leads to an inconsistent view of the system between sensor
network frontend and backend (business logic/management) systems. Most events
were retransmitted repeatedly so that the error was temporal and the correct logic was
executed with a delay (compare Fig. 8).

www.manaraa.com

 Architecture for Collaborative Business Items 155

6 Conclusion

In this paper we have demonstrated how a system can be build to easily integrate
arbitrary sensor networks into business logic. For this purpose we did not stop at the
point where we use this technology as a data source, but rather tried to unleash the
computation power that results from deploying networked sensor nodes into real life
environments. We showed that service oriented architectures are way to abstract from
classical system designs using only backend driven business logic. The proposed
system enables sensor networks to actively take part in distributed processes.

The implementation of our UPnP sensor network gateway shows that this
technology can easily be used to adapt existing sensor node platforms to a service
oriented business architecture. While trying to make the least possible assumptions
about functionality of the services executed by sensor network during the design of
our architecture, we showed by trial a specific use case that this technology can be
successfully applied in real life settings. In spite of the still prototypical nature this
system we hope that our experiences can help the deployment and integration of
sensor node technology into business applications in near future.

Acknowledgements

The work presented in this paper was fully funded by the European Community
through the project CoBIs (Collaborative Business Items) under contract no. 4270.
We further like to thank Paul McCune and the people at BP Chemicals Saltend for
their support during the application trial.

References

[1] M.Strohbach, H.-W.Gellersen, G.Kortuem, C.Kray. Cooperative Artefacts: Assessing Real
World Situations with Embedded Technology. Ubicomp 2004

[2] C. Bornhövd, T. Lin, S. Haller, J. Schaper, Integrating Automatic Data Acquisition with
Business Processes Experiences with SAP’s Auto-ID Infrastructure, Proceedings of 30th
VLDB Conference, Toronto, Canada

[3] Z. Nochta, N. Oertel, P. Spiess. Relocatable Services and Service Classification Scheme,
CoBIs Deliverable Report, http://www.cobis-online.de/files/Deliverable_D101.pdf, 2005

[4] U. Saif, D. J. Greaves, Communication Primitives for Ubiquitous Computing or RPC
Considered Harmful, 21st ICDCSW, p. 0240, 2001.

[5] C. Decker, P. Spiess, L. Moreira sa de Souza, M. Beigl, Z. Nochta.: Coupling Enterprise
Systems with Wireless Sensor Nodes: Analysis, Implementation, Experiences and
Guidelines, Pervasive Technology Applied @ PERVASIVE, May 7, 2006, Dublin,
Ireland

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System Architecture
Directions for Networked Sensors ASPLOS-IX, 2000

[7] P. Havinga, The Quest for Low Cost, Ultra Low Power Wireless Networks for smart
environments, Ambient Systems white paper, 2006

www.manaraa.com

156 T. Riedel et al.

[8] C. Decker, A. Krohn, M. Beigl, T. Zimmer, The Particle Computer System Proceedings
of the ACM/IEEE Fourth International Conference on Information Processing in Sensor
Networks, Los Angeles, 2005

[9] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, and M. Welsh,
Hourglass: An Infrastructure for Connecting Sensor Networks and Applications, Harvard
Technical Report TR-21-04, 2004

[10] S. Madden, M.Franklin, J. Hellerstein, W. Hong. TinyDB: An Acqusitional Query
Processing System for Sensor Networks. ACM TODS, 2005

[11] Universal Plug and Play Device Architecture, Microsoft Corporation, 1999.
[12] C. Intanagonwiwat, R. Govindan and D. Estrin, Directed Diffusion: A Scalable and

Robust Communication Paradigm for Sensor Networks. In Proceedings of the Sixth
Annual International Conference on Mobile Computing and Networks (MobiCOM 2000),
August 2000, Boston, Massachusetts.

[13] J. Kulik , W. Heinzelman , and H. Balakrishnan, Negotiation-based protocols for
disseminating information in wireless sensor networks. Wireless Networks, March 2002.

www.manaraa.com

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 157 – 170, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Autonomic Management Architecture for Flexible Grid
Services Deployment Based on Policies

Edgar Magaña1,3, Laurent Lefevre2, and Joan Serrat3

1 Cisco Systems, Inc.
10 West Tasman, San Jose, CA 95134, USA

emagana@cisco.com
2 INRIA RESO / LIP Laboratory

UMR 5668 (CNRS, ENS Lyon, INRIA, UCB), France
laurent.lefevre@inria.fr

3 Universitat Politècnica de Catalunya
Jordi Girona 1-3, Barcelona, Spain

serrat@tsc.upc.edu

Abstract. This paper describes a dynamic, scalable and flexible Policy-based
Management Architecture (PbMA), which is characterized by a reliable and
autonomous deployment, activation and management of Grid Services. This
architecture follows the implied conditions by the Open Grid Services
Architecture (OGSA) standard. Although applicable to any user profiles, our
system is essentially intended for non-massive resource owners accessing large
amounts of computing, software, memory and storage resources. Unlike similar
architectures, it is able to manage service requirements demanded by users,
providers and services themselves. This architecture is also able to manage
computational resources in order to fulfill Quality of Service (QoS)
requirements, based on a balanced scheduling of resources exploitation. Our
approach is scalable and flexible by extending itself the management
components and policies interpreters needed to control multiple infrastructures
regardless network technology, operative platform or administrative domain.
The management architecture shows its reliability through a Grid Service
deployment example.

Keywords: Network Computing, Policy-based Management Architecture,
Quality of Service, Grid Services.

1 Introduction

The impact of the Grid in the academic and industrial sectors is growing every day,
although it was originally understood as an emerging technology that provides an
abstraction for resources sharing and collaboration across multiple administrative
domains [1]. The current generation of Grid Architectures heavily relies on the
program designer or users to express their requirements in terms of resource usage.
Such requirements are usually hard-coded in a program using low-level primitives,
but Grid needs mechanisms to handle computational resources as much efficiently

www.manaraa.com

158 E. Magaña, L. Lefevre, and J. Serrat

and dynamically as possible. In other words, Grid Services require important
innovations to guarantee network Quality of Service (QoS) levels, management
autonomy, scalability, and fault-tolerance to support Grids consisting of thousands of
nodes [19]. It is worthy to say that the term “resources” covers a wide range of
concepts including physical entities (computation, communication, storage, etc),
information storage (databases, archives, instruments, etc), individuals (people and
their expertise), capabilities (software packages, brokering and scheduling services)
and frameworks for access and control [3]. Therefore, Grid Management frameworks
have a very heterogeneous environment to handle, which should be compatible with
the emerging Grid Services specifications [6]. Also it is necessary to take into account
the innovations in Web Services related to maintaining the state of the resources
behavior (stateful), in order to fulfill the implicit requirements by new generation of
Grid Services. Thereby, relevant research effort is needed to innovative Grid Systems
and also to make the current Grid models suitable for those emerging usage scenarios.

Policy-based Technology has attracted significant industry and academic interest
for management purposes. Presently, it is promoted by the Distributed Management
Task Force (DMTF) and is standardized within the Internet Engineering Task Force
(IETF) Policy Working Group [5]. Policies are defined as rules that specify the
expected behavior of the managed system under certain conditions and they are
enough abstract to apply across a variety of different devices so there is no need to
create separate rules for each policy client. This paper covers the presentation of a
management architecture to benefit common users with access to Grid Infrastructures
wherever they are and whenever they need adding the “stateful” resources parameters
of the new generation of Grid Services offering to reduce procurement, deployment,
maintenance, and operational costs through multiple infrastructures regardless
network technology, operative platform or administrative domain. The ability to link a
Grid Infrastructure (GI) to users anytime and anywhere addresses new challenges, the
straighter of them is to be able for handling resources and services, which might
appear and disappear in a completely dynamic way. Policy-based management
systems offer a more autonomous and flexible management approach by allowing the
possibility of customizing network behavior to user requirements.

The paper is structured as follows. Section 2 presents related work. In Section 3,
we detail the components of the Policy-based Management Architecture. In this
Section, we also explain the implemented mechanisms to extend its management
facilities to show its scalability and flexibility properties. Section 4 explains the policy
schema that is used to deploy and to manage Grid Services. In Section 5, we present
the functionality of the overall architecture and its ability to handle Grid Services’
requirements implied by OGSA standard. A set of early experiments are provided in
Section 6. Finally, conclusions and future work are described in Section 7.

2 Related Work

Only a few systems for monitoring, scheduling and managing resources of Grid
environments are very well known and exploited. A good example of QoS
provisioning in Grid is the Globus Architecture for Reservation and Allocation
(GARA) [7], which is presented as an extension of Globus Resource Management

www.manaraa.com

 Autonomic Management Architecture for Flexible Grid Services Deployment 159

Architecture (GRMA). It introduces a generic resource object, which encompasses
network flows, memory blocks, disk blocks as well as processes and adding
reservation functionality as a first class entity in the resource manager architecture.
Although GARA fulfils important resource management necessities, it has limitations
supporting Service Level Agreement (SLA) [15] protocols and it lacks of OGSA
compatibility [2], therefore it is not yet compatible with recent versions of Globus
Toolkit [4]. On the other hand, the Open Grid Forum (OGF – www.ogf.org) is
working on better solutions for QoS through its Grid Resource Allocation Agreement
Protocol Working Group (GRAAP-WG), which has produced a “state of the art”
document, laying down properties for advanced reservation in Grids [16]. Basically
our approach makes use of their most relevant recommendations.

Moreover, the Grid community claims for a major entity in charge of providing
high-level management to allow quick and autonomous deployment, activation and
reservation of Grid Services as well as to handle QoS parameters. In this field, some
projects appeared with proposals to improve the management of the Grid such
Condor-G [8], Control Architecture for Service Grids [11], Data Grid [9] and
Nimrod-G [10]. Policy-based middleware systems for Grid Services were presented in
[12] and [13], involving technologies as active networks and the GARA architecture
but without any constrains regarding OGSA compatibility. Some of the above
developments are just functional improvements within the context of their respective
projects, whilst Condor-G and G-QoSM [17] show their drawbacks of not being
completely autonomous. Although G-QoSM is coping similar features which are
presented in this paper, it is not very flexible as well. It bases its reliability into a
central component, the middleware Resource Manager (RM), which may present
overload problems for large amount of Grid Service’s requests.

3 Policy-Based Management Architecture

Policy-based Management (PbM) [5] is a very suitable technology to manage
complex heterogeneous environments such as Grid Computing. The Autonomic
Management Architecture for flexible Grid Services deployment is an implementation
of this technology.

This architecture deals with three different sources of resource requirements. The
users QoS necessities, resource provider’s availability (i.e. amount of resources free
to execute new services) and services specifications according to Open Grid Services
Architecture (OGSA). It is designed as a hierarchically distributed architecture,
consisting of two levels; the Network Management System (NMS) and the Element
Management System (EMS). The proposed hierarchical levels combine the benefits of
management automation with reduction of management traffic and distribution of
management monitoring activities. In this way we assure a high level of scalability in
this approach. This hierarchical approach is shown in Figure 1.

The NMS is the entry point of the management architecture. It is the recipient of
policies, which may have been the result of network operator management decisions
or Service Level Agreements (SLAs) between Grid Infrastructure Providers (GIPs)
and Grid Services Consumers (GSCs). The SLA requires reservation of resources per
service as well as configuration of the network topology, which is automated by
means of policies sent to the NMS. Network-level policies are processed by the NMS

www.manaraa.com

160 E. Magaña, L. Lefevre, and J. Serrat

Policy Decision Points (PDPs), which decide when policies can be enforced. When
enforced, they are delivered to the NMS Policy Enforcement Points (PEPs) that map
them to element level policies, which are, in turn, sent to the EMSs. EMS PDPs
perform similar processes at the element level. Finally, the Grid-Node (GN) PEPs
execute the enforcement actions at the Grid Infrastructure.

NMS

PEP

REP

PDP

NMS

PEP
Policy

Repository

PDP
PDP

EMS

PDP Policy

AN
VE

PEP

VE

PEPPEPPEP
Storage
GRID

U
D

D
I

G
ri

d
 S

er
vi

ce
s

In
te

rf
ac

es

W
S-

R
F

Computational Resources

Policy Editor

EMS

PDP Policy

AN
VE

PEP

VE

PEPPEPPEP
CPU
GRID

EMS

PDP Policy

AN
VE

PEP

VE

PEPPEPPEP

GRID

Memory

O
th

er
 M

an
ag

em
en

t
In

st
an

ce
s

NMS

PEPPEP

REP

PDPPDP

NMS

PEP
Policy

Repository

PDP
PDP

EMS

PDP Policy

AN
VE

PEP

VE

PEPPEP

VE

PEPPEPPEPPEP
Storage
GRID

U
D

D
I

G
ri

d
 S

er
vi

ce
s

In
te

rf
ac

es

W
S-

R
F

Computational Resources

Policy Editor

EMS

PDP Policy

AN
VE

PEP

VE

PEPPEP

VE

PEPPEPPEPPEP
CPU
GRID

EMS

PDP Policy

AN
VE

PEP

VE

PEPPEP

VE

PEPPEPPEPPEP

GRID

Memory

O
th

er
 M

an
ag

em
en

t
In

st
an

ce
s

Fig. 1. The Hierarchical Policy-based Management Architecture

3.1 Components of the Network Management System

The components of the proposed PbMA for Grid Services Management are illustrated
on Figure 2. They have been developed in order to support service deployment,
decision-making with regards to resources control, communication interfaces with
WS-Resource Framework [18] and Inter-Domain Communication respectively. We
proceed now to present the details of all of them. As the NMS and EMS have similar
functionality and components, we focus on the NMS and wherever applicable we note
the differences between them.

Policy Editor: It exists only at the network level. It offers a GUI and a tool-set in the
form of templates and wizards for the composition of policies. These are generic
enough to accommodate different types of policies, thus exploiting the extension
capabilities of the architecture.

Policy Manager: The role of this component is to provide a higher layer abstraction
(or adaptation) that offers a global view of Grid resources to upper layer Grid services
or applications in a more QoS deterministic way. The Policy Manager receives the
SLA that has been agreed between GIPs and GSCs. This input, together with Grid
Service resources and topological requirements received from Service Descriptor
Component, is used to start the Grid Services management process.

Service Descriptor: This component is designed to retrieve the Grid service resource
requirements from the WS-Resource Properties Document. In fact, it integrates a set
of processes usually entrusted to the user of a Web Service, namely, to invoke a
service name registry, to request a service instantiation, to check whether into the

www.manaraa.com

 Autonomic Management Architecture for Flexible Grid Services Deployment 161

WSDL definition of the Web Service Interface there is a declaration for a WS-
Resource properties document and, finally, to retrieve all the properties elements from
this one.

Domain Manager: The PDP Manager receives policies to be dispatched to the
appropriate Policy Decision Point (PDP). If the corresponding PDP is not installed, it
requests its download and installation. In this way, the management functionality of
the system can be dynamically extended at run-time when is needed. The PDP
Manager also controls the lifecycle of these PDPs.

Policy Conflict: When policies arrive at specific PDP should be checked for possible
conflicts against other policies previously processed within that PDP. However, the
PBMA has multiple PDPs each covering a particular functional domain (e.g. QoS,
Grid Service, etc.).

Policy Decision Point (PDP): The PDP component checks for possible syntactic and
semantic conflicts in policies, solves detected conflicts, makes decisions about when a
policy should be enforced, forwards the policies that need to be enforced to PEP
components, answers requests for decisions about configuration actions coming from
the managed device and controls the policy validity period in order to uninstall
expired policies.

Monitoring
System

Domain
Manager

QoS
PDP

PEP

Resource
Manager

Policy Editor

Policy
Manager

Policy
Conflict

Extended
PDPs

Extended
PDPs
Service

PDP

Repository

In
te

r
D

om
ai

n

M
an

ag
er

PDPs

PEPPEP

WS-RF
Registry

Grid Infrastructure
Providers (GIPs)

Grid Services
Consumers (GSCs)

Service Level Agreement
(SLA)

S
er

vi
ce

D

es
cr

ip
to

r

External
Interface

Monitoring
System

Domain
Manager

QoS
PDP

PEP

Resource
Manager

Policy Editor

Policy
Manager

Policy
Conflict

Extended
PDPs

Extended
PDPs
Service

PDP

Repository

In
te

r
D

om
ai

n

M
an

ag
er

PDPs

PEPPEP

WS-RF
Registry

Grid Infrastructure
Providers (GIPs)

Grid Services
Consumers (GSCs)

Service Level Agreement
(SLA)

S
er

vi
ce

D

es
cr

ip
to

r

External
Interface

Monitoring
System

Domain
Manager

QoS
PDP

PEP

Resource
Manager

Policy Editor

Policy
Manager

Policy
Conflict

Extended
PDPs

Extended
PDPs
Service

PDP

Repository

In
te

r
D

om
ai

n

M
an

ag
er

PDPs

PEPPEP

WS-RF
Registry

Grid Infrastructure
Providers (GIPs)

Grid Services
Consumers (GSCs)

Service Level Agreement
(SLA)

S
er

vi
ce

D

es
cr

ip
to

r

External
Interface

Fig. 2. The Network Level Management Architecture

Resource Manager: The role of the resource manager mainly focuses on assessing
resource utilization. This component maintains information about the nodes and links
of the system and can compute possible end-to-end routes for a given service, based
on the network topology and resource information obtained by the monitoring system.

www.manaraa.com

162 E. Magaña, L. Lefevre, and J. Serrat

Monitoring System: The monitoring system is logically and physically distributed in
the overall management infrastructure as well as on the Grid nodes. The monitoring
system effectively collects analyses and provides the necessary information needed by
the PDPs to make appropriate decisions. It is worthy to mention that the monitoring
system will use the Globus Metacomputing Directory Service (MDS) [4].

Inter-Domain Manager (IDM): The IDM is in charge of implementing end-to-end
negotiation of service deployment into separate Grid nodes that belong to different
administrative domains, managed by different organizations.

Policy Enforcement Point (PEP): It receives policies and translate them into the
appropriate commands offered by the API of the managed device, for instance in
commands of the Globus Toolkit [4]. In this way the management framework is able
to support heterogeneous managed devices just installing the appropriate PEP
component for a particular type of managed device.

Repository: The primary role of the database is to meet the management framework
software components needs. Typical information stored in the database could be
policies, domain components, profiles, access rights, topological information, etc.

3.2 Architectural Flexibility and Extensibility

The architecture is dynamically extensible with new management functionality to
handle new appearing requirements (i.e. new management domains in charge of
different functional activities). Furthermore, the functional extension is available at
two distinct granularity levels that is, the PDP-PEP (domain level) and the action-
condition interpreters (resource level). In both cases, the extension might be triggered
during the policy processing if the system requires a component not yet installed.

Fig. 3. Extending Management Domains

Extending Management Domains: It is the first level of extensibility in this
approach. When a new management activity is required and it is not already installed
on the system, a new functional management domain deployment process is triggered

www.manaraa.com

 Autonomic Management Architecture for Flexible Grid Services Deployment 163

automatically by the system. This action is one of the main activities of the Domain
Manager Component. The first instance is the Domain Manager, which is responsible
for forwarding received policies to the appropriate Domain Policy Decision Point
(PDP). If the corresponding PDP is not installed, the Domain Manager requests the
Components Repository to download and install it, thereby extending the
management functionality of the system as required.

The sequence diagram in Figure 3 illustrates how the aforementioned extension is
achieved. Then, a request is raised to the Repository that initiates the installation of
that component. Once the PDP is ready, the Domain Manager forwards the policy to
it normally. Often, the needed functional extension would not imply the introduction
of a complete management service but just the extension and/or modification of one
already available.

Extending Management Action – Condition Interpreters: The extension of a PDP
by dynamically installing new Action and Condition Interpreters is another option for
extending the management functionality in addition to the dynamic installation of a
PDP previously described. Two key classes within the PDP component are the action
and condition interpreters. They provide action and condition processing logic for
some policy types of those handled by the PDP. Each PDP has at least one action and
condition interpreter although it might have more. Within each PDP, although drawn
separately, there is a generic Action Interpreter class and a class loader class. The
generic Action Interpreter class receives all requests to Action Interpreters and
demultiplexes them. When a requested Action Interpreter object is not found it
interacts with the Repository to download the needed code. Figure 4 shows the
interactions occurring when this happens.

Fig. 4. Extending Management Actions – Conditions Interpreters

Removing Management Domains and Interpreters: Any new deployed instance
has a limited time of live. It is a counter that is decremented once the component has
finished its corresponding management activities. Once the deadline is reached the

www.manaraa.com

164 E. Magaña, L. Lefevre, and J. Serrat

component is removed from the system. Therefore, this architecture keeps certain
level of autonomy when a service instances are no longer needed

4 Management Policies Structure

Policies specify the actions that should be applied when particular conditions are met.
Notifications are used to communicate to higher-level management instances or even
user applications reports containing information such as the enforcement result of a
policy or group of policies, the resource consumption, a performance or fault
management event, etc. Policies are expressed in XML (eXtensible Markup
Language) [21] and transmitted using SOAP (Simple Object Access Protocol). SOAP
permits the transmission of policies as plain XML, ensuring interoperability.

Data-types are supported and there is the ability to specify relationships and
constraints between different elements of a document. The architecture presented
takes advantage of the properties of the XML Schema to reflect the access rights of
users in relation with management functionality. That is, the framework is capable of
dynamically creating, as result of management policy enforcement, restricted XML
Schemas for particular users against which, XML user policies are validated. When a
user obtains certain management responsibilities from the network operator, by means
of delegation, it effectively is assigned one or more restricted XML Schemas, which
delimit the types of policies and the policy action and condition values allowed to that
user. The policy structure used in our approach is based on the IETF Policy Core
Information Model [5] though simplified by defining as mandatory only those
features essential for policy processing. Hence, the size of policies is considerably
reduced (around five times smaller than following the PCIM model) and their
processing is simpler. A section of the policy schema used in our evaluation tests is
depicted in Figure 5. The policy rule consists of seven elements. First, the
PolicyRuleName uniquely identifies the policy within the management infrastructure.
Hence, in addition to the policy type identifier a sequence number is included.

<xsd:schema targetNamespace= http:// nmg.upc.edu/~emagana/pbma_Schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http:// nmg. upc.edu/~emagana/pb_Schema ">

<xsd:element name="PolicyRule">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="PolicyRuleName" type= “format_Type ”/>

<xsd:element name="PolicyRoles" type= “… ”/>

<xsd:element name="UserInfo" type= “… ”/>

<xsd:element name="PolicyRuleValidityPeriod" type= “… ”/>

<xsd:element name="PolicyDomain" type= “… ” minOccurs =“1”/>

<xsd:element name="Conditions" type= “… ” minOccurs =“1” maxOccurs ="unbounded"/>

<xsd:element name="Actions" type= “… ” minOccurs= “1” maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:schema targetNamespace= http:// nmg.upc.edu/~emagana/pbma_Schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http:// nmg. upc.edu/~emagana/pb_Schema ">

<xsd:element name="PolicyRule">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="PolicyRuleName" type= “format_Type ”/>

<xsd:element name="PolicyRoles" type= “… ”/>

<xsd:element name="UserInfo" type= “… ”/>

<xsd:element name="PolicyRuleValidityPeriod" type= “… ”/>

<xsd:element name="PolicyDomain" type= “… ” minOccurs =“1”/>

<xsd:element name="Conditions" type= “… ” minOccurs =“1” maxOccurs ="unbounded"/>

<xsd:element name="Actions" type= “… ” minOccurs= “1” maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Fig. 5. Policy Schema Example

The PolicyRoles element identifies the Roles to which the policy applies. That is,
all network elements developing a role listed in the policy is expected to respond to it.

www.manaraa.com

 Autonomic Management Architecture for Flexible Grid Services Deployment 165

The UserInfo contains the identifier of the user that is introducing the policy in the
framework. This identifier is used to select the restricted XML Schema against which
the user policy should be validated with. The policy expiration date is contained
within the PolicyRuleValidityPeriod element. Usually the expiration date is just given
with the day and hour the policy starts and finishes being valid. Nevertheless, filters
specifying concrete months, days and hours during which the policy is not valid can
be also introduced. The PolicyDomain element is used for the correct processing of
policy sets. A policy set is a group of policies that should be processed in a particular
way, i.e. atomically, sequentially, etc.

The Conditions element includes all policy conditions. Conditions can be either
compound or simple and refer to an hour of the day, an IP flow, a concrete
notification or a managed device status. The modules needed to monitor these
conditions, if any, are also extracted from the Conditions element information. This
element is optional; when not included, the framework interprets that the policy action
should be enforced directly. The Actions element contains the action type and
parameters as well as information about the module responsible of enforcing this
action. At least one Actions element is mandatory in all policies but there can be more
that one. The defined policies have been categorized according to the domain of
management operations, policies that belong to a specific domain are processed by
dedicated Policy Decision Points PDPs and PEPs.

5 Management and Deployment of Grid Services

The Grid service management process starts when an authorized user requests a Grid
Service to the PBMA through its policy editor interface. At this time the client will
specify the name of the requested Grid service and the QoS requirements for its
deployment. Once the PBMA receives the client request, it exchanges information
related to the service in order to process the resources service requirements.

5.1 Service Level Agreement (SLA)

Previously to any Grid Service request, every GSC has concluded a SLA with at least
one GIP. In this agreement a specific QoS level will be satisfied for every service
running on their providers' infrastructure. We assume that QoS is quantified in levels
like “diamond” (efficiency guaranteed), “gold” (completely distributed), “silver”
(searching alternatives) and “bronze” (best effort).

5.2 Grid Service Requirements – Network Level Policy Creation

The PBMA has to configure its Grid Infrastructure (GI) with the constraint of
matching the requested client needs with the available resources at the Grid target
nodes where a Grid Service instance will be running. Our architecture merges the
requirements from the client, the providers' resources availability as well as the
service specification requirements and creates the Network Level (NL) Policy for its
corresponding Grid Service. We would like to highlight that, this features is one of
the most important novelties in this approach. In the context of this work, the Policy
Manager has to contact with the Service Descriptor in order to receive the Grid

www.manaraa.com

166 E. Magaña, L. Lefevre, and J. Serrat

service specifications, which will be extracted from WS-Resource properties
document. This document has been associated with the WSDL porType defined by
Grid Service Instance requested via UDDI Registry. In Figure 6 we show fragments
of the above mentioned documents that were used during the evaluation phase
described on Section 6.

OGSA Compatibility: As previously stated, the proposed architecture is compatible
with OGSA. The Service Descriptor Component uses XML requests to tag service
data, SOAP to transfer it through the network, WSDL for describing the services
available and finally UDDI is used for listing what services are available. SOAP, as a
data communication format, offers different advantages in order to extract the
information necessary for our architecture. Essentially, we parse the SOAP files into
the OGSA Policy Descriptor and just extract the Grid service specifications
mentioned above. The Service Descriptor sends back the parsed information in Java
format to be processed by the Policy Manager and thus to create the NL policy.

Inter-Domain Communication: Just in the case that the requested service needs
resources that belong to different administrative domains, the Policy Manager
contacts the Inter Domain Manager to start the resources negotiation with another
domain. Due to the fact that communications are always under XML format, there
should not be fallen problems regarding communication amongst management
entities. At this moment, the second domain is starting its own resource management
and scheduling processes.

5.3 Network Level Policy Analysis Sequence

The Policy Manager (PM) sends the just created NL Policy to the PDP Manager. It
later evaluates the conditions of the policy and tries to match them with the
availability of resources on the Grid Infrastructure. In order to complete these
functions, it firstly has to analyze the QoS of the requested service. To do so it
contacts the Resource Manager (RM), whose task is to analyze the network topology
and resources information received from the monitoring system. The checking of
availability resources is realized for every resource involved in the establishment of a
service into the Grid topology (i.e. memory, bandwidth, storage, etc).

5.4 Selection of Grid Target Nodes

The RM tries to find suitable set of Grid nodes that satisfies the requirements given by
the NL-Policy. If the search is not limited by other constraints, a set of different nodes
will result. All these Grid nodes are candidates for the allocation of the service
because they fulfill the resource and topological requirements expressed in the
NL-Policy. However, a service has additional requirements specified in the Grid
Service Data. The RM does not have access to such information because this lies
within the domain of the Service PDP. Therefore, the PDP Manager decides the set of
final nodes to allocate the service.

5.5 Grid Nodes Configuration – Element Level Policy Creation

At this time, the PDP Manager has to decide which resources will be part of the final
set of Grid nodes that will be configured to execute the Grid service with the specified

www.manaraa.com

 Autonomic Management Architecture for Flexible Grid Services Deployment 167

QoS level. In this component, an appropriate algorithm carries out the selection of the
best nodes and forwards the policy to the QoS PDP. Next, the QoS PDP sends the
decision to its corresponding PEP. The QoS PEP will transform the request into a set
of appropriate element-level QoS policies (one policy for each of the Grid nodes
selected) and it will send the policy into the EMS of the established nodes. Once the
QoS policy is enforced, the EMS calls an activation method of Globus interfaces for
each node, thus ending the configuration process.

5.6 Grid Service Resources Activation

Since the enforcement of the QoS policies has successfully terminated in all nodes,
the PDP Manager starts processing the activation policies by forwarding them to the
corresponding PDP to be evaluated. If there are no conditions or actions to be
processed at the network level, it forwards the policy to the PEP of the involved Grid
nodes. The activation PEP enforces the policy that assigns the resources using the
interfaces offered by the Globus ToolKit. The result of the Grid resources activation
is forwarded back to the network-level through the element-level for control and fault
management proposes. At this moment the service requested is running with the
agreed QoS level. The Monitoring System Component updates the QoS PDP with
resource utilization. Therefore, in case that one or more of the Grid nodes can not
offer anymore their resources, the PBMA will restart the Grid Service Management
Process to find new Grid nodes which offer similar resources.

<!-- ========== WSDL Interface for Newton’s Method Application ============ -->

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://nmg.upc.es/Newton'sMethodExample" ...>

<wsdl:types>

<xsd:schema

<xsd: import
targetNamespace="http://nmg.upc.es/NewtonsMethodExample_Properties"

<xsd:attribute name="ResourceProperties" type="xsd:Newton's Method"/>

...

<!-- == WS-Resource Properties Document for Newton’s Method Application == -->

<wsdl:portType name="Newton's Method"

wsrp:ResourceProperties= "intf:GenericMethodProperties">

<xsd:sequence>

<xsd:element maxDistribution="5" minDistribution="1" name=" " …

<xsd:element amountMinMemory="20" amountMaxMemory="250" name=" "...

… "wsa:EndpointReferenceType"/>

</wsdl:portType>

Fig. 6. WSDL and WS-RF Interfaces

6 Early Experiments

For the evaluation of the architecture, we have used a set of heterogeneous nodes (i.e.
Intel® and AMD®) with different operating platforms (Windows 2000 and Linux
Fedora 4) as well as different amount of resources to share, such as our Grid
Infrastructure. The only homogeneous feature of these nodes is that all of them have
Globus Toolkit installed and they have been signed by the same Certificate Authority
(CA), our own CA and not the standard Globus-CA for security reasons. A random
process generator was used to dispatch processes to the network nodes so that we
emulated normal “working day” conditions for all the nodes involved to assure results

www.manaraa.com

168 E. Magaña, L. Lefevre, and J. Serrat

according to real Grid environments. The entire architecture was programmed in Java
platform. The components of the PBMA were CORBA objects. Policies were
expressed in XML and the interfaces were implemented with the standard Interface
Definition Language.

The Grid service application selected to be distributed along the Grid environment
was Newton's Method [14], a generalized process to find an accurate root of the
equation f (x) = 0. This method has many physical and astronomical application and
basically was selected because, the number of the algorithm’s iterations is
considerable, therefore the amount of process resources needed is really significant,
and also because this method does not imply a complex code to implement.

0

20

40

60

80

100

0 10000 17500 25000 32500 40000 47500 55000 62500 70000

Time (ms)

P
e
rc
e
n
ta
g
e
U
s
e
d

cpu memory storage

Fig. 7. Resources’ Performance with Best Effort Management Policy

The first results are shown in Figure 7. In this experiment we have plotted the
percentage of resources (processor, memory and storage) used by Newton's application
during five sequences with around of one thousand iterations for each one of them (i.e.
the same application will be executed five times in order to obtain a more precise result).
It is clear that during the application processing time the resources are at their maxim
used capability and any other process will be queued and executed after completing the
equation. In this example, the total time is around seventy thousand milliseconds
(70,000ms), whilst in some astronomic applications it could reach days in simulation.

0

20

40

60

80

100

0 10000 17500 25000 32500 40000 47500 55000 62500 70000

Time (ms)

P
e
rc
e
n
ta
g
e
U
s
e
d

cpu memory storage

Fig. 8. Resources’ Performance with Golden Level Management Policy

The following test in our evaluation process is the insertion of a QoS Policy in the
application above described. In this test, the policy demands the maximization of
resources exploitation in a minimal amount of time (diamond QoS level policy). To
obtain this level of efficiency, the PBMA used different nodes for each application
sequence with a maxim of five nodes. These service requirements were obtained from
the WS-Resource Properties document, presented in Figure 6.

www.manaraa.com

 Autonomic Management Architecture for Flexible Grid Services Deployment 169

The Grid nodes continue their normal activity until the system detects that, the
used percentages of resources are at low levels in some of them. At this moment, their
resources are able to be shared with any client within the Grid Infrastructure. The
management system distributes the application to the set of selected nodes and
remotely executes the applications. Figure 8 plots the resources monitoring activity in
one of the selected nodes. In order to compare the new processing time versus the
previous graph we have selected the same node. The analysis of this graph illustrates
the benefits of our approach because the system offers substantial savings on time and
used resources. Moreover, this graph shows the time needed by the server to gather
the results provided by the other selected servers and to obtain the final result.

Finally, Table 1 shows the elapsed times measured during policy Grid Service
resources merging, resources selection, setting nodes up and deployment of the service
application. The driving force to improve this architecture will be the possibility to
reduce these times, which in turn are directly proportional to the efficiency of the
Autonomic Management Architecture for Grid Services Management.

Table 1. Consuming Times by Grid Service Deployment Process

Actions Timing
Network Level Policy Creation (SLA - OGSA) 750 ms
Resource Monitoring 2200 ms
Resource Selection and Reservation 3525 ms
Policy Execution 30125 ms

Our current work also includes merging the presented architecture with autonomic

gateways [20]. This design will help Grid’s designers to evaluate and monitor more
precisely the usage of their network resources. This architecture will be deployed on a
large scale basis. It is currently evaluated on Grid5000 [19] platform.

7 Conclusions and Future Work

This paper describes the features, implementation details and advantages of the
Autonomic Management Architecture for flexible Grid Services deployment based on
Policies. This approach is able to deploy and to manage Grid Services instances into
heterogeneous networks configured such as Grid Infrastructure. The PbMA extracts
computational resources’ requirements from WSDL documents. It merges these
requirements with QoS necessities of Grid Services’ consumers. Then, our approach
collects information about resources availability in the Grid Infrastructure Providers.
And finally, it schedules Grid Services on best available computational resources,
getting a load balancing through all over the nodes.

Although our approach is focused on Grid environments where the wide range of
nodes will offer small amounts of resources, the solution is not only limited to this
domain of users/clients. The results presented in this paper show the advantages of
our architecture. In fact, the reduction in process time, regarding a Grid Service did
not manage by our approach, is around the 57% and the percentage of resources used
per second in all Grid Infrastructure is much more bigger. Therefore our environment
in terms of used resources is more efficient. We are offering to individual, small

www.manaraa.com

170 E. Magaña, L. Lefevre, and J. Serrat

business and industrial users, an automatic and self-management effective access to
massive amounts of computing, network and storage resources, reducing
procurement, deployment, maintenance, and operational cost. The ongoing work
involves the development of components necessary for supporting system fault
tolerance. The last phase will consist of testing the performance of the architecture on
more complex networks like the French initiative, Grid5000 [19].

References

1. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual
Organization”. Int. Journal of Supercomputer Applications, vol. 15 no. 3, USA 2001.

2. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid: An Open
Services Architecture for Distributed Systems Integration”, GGF June 2002.

3. J. Nabrzyski, J. M. Schopf and J. Weglarz, “Grid Resource Management State of the Art
and Future Trends” Kluwer Academic Publishers. Boston, USA October 2003.

4. The Globus Project Site: http://www.globus.org/
5. IETF Policy Site: http://www.ietf.org/
6. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S.

Tuecke, W. Vambenepe, “The WS-Resource Framework” Globus Alliance Group
http://www.globus.org/wsrf/ May 2004.

7. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. “A Distributed
Resource Management Architecture that Supports Advance Reservation and Co-
Allocation”. In the International Workshop on Quality of Service, June 1999.

8. J. Frey, T. Tannenbaum, et al., “Condor-G: A Computation Management Agent for Multi-
Institutional Grids”, Proceedings of HPDC10, San Francisco, USA, August 2001.

9. DataGrid Site: http://www.eu-dataGrid.org
10. R. Buyya, “Nimrod/G: An Architecture for a Resource Management and Scheduling in a

Global Grids” 4th International Conference on High Performance Computing in Pacific
Region. Los Alamitos, USA, 2000.

11. S. Graupner, V. Kotov, A. Andrzejak and H. Trinks, “Control Architecture for Service
Grids in a Federation of Utility Data Centers”, HP Labs., Palo Alto, USA. August 2002.

12. K. Yang, A. Galis, C. Todd. “Policy-Based Active Grid Management Architecture”. 10th
IEEE International Conference on Networks ICON 2002.

13. E. Magaña, E. Salamanca and J. Serrat, “Proposal of a Policy-Based System for Grid
Services Management”, APGAC'04/ICCS'04 Krakow, Poland June 2004

14. Steven C. Chapra and R. Canale, “Numerical Methods for Engineers: With Software and
Programming Applications”. McGraw-Hill ISBN: 0072431938.

15. Sahai, S. Graupner, V. Machiraju and A. Moorsel. “Specifying and Monitoring Guarantees
in Commercial Grids through SLA”. In 3rd IEEE/ACM CCGrid2003, Tokyo, Japan 2003.

16. J. MacLaren. Advance Reservations: State of the Art. GGF GRAAP: http://www.ggf.org/
Meetings/ggf7/sched-graap2.0

17. R. J. Al-Ali, K. Amin, G. Laszewski, O. Rana, et al., “Analysis and Provision for
Distributed Grid Applications”. Journal of Grid Computing, Kluwer, 2004.

18. WS-Resource Framework Site: http://www.globus.org/wsrf/
19. Grid 5000 Project. Web Site: http://www.Grid5000.org/
20. M. Chaudier, et al, “Towards the design of an autonomic network node”, Int. Working

Conference on Active and Programmable Networks (IWAN), Nice, France, Nov. 23, 2005.
21. A. Vedamuthu, et al., “Web Services Policy 1.5 – Framework”. W3C Working Draft.

www.manaraa.com

Variations and Evaluations of an Adaptive

Accrual Failure Detector to Enable Self-healing
Properties in Distributed Systems

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer

Institute of Computer Science
University of Augsburg

D-86135 Augsburg, Germany
{satzger, pietzowski, trumler, ungerer}@informatik.uni-augsburg.de

http://www.informatik.uni-augsburg.de/en/chairs/sik/

Abstract. The initiatives Organic Computing and Autonomic Comput-
ing introduced challenging visions for future computer systems. They
address the growing complexity of these systems that demands for new
ways to control them. Future systems should be able to adapt dynami-
cally to the current conditions of their environment. They should be char-
acterised by so-called self-x properties like self-configuring, self-healing,
self-optimising, self-protecting, and context-aware. For the incorporation
of self-healing capabilities into distributed systems the detection of fail-
ures is a crucial part. Recently we proposed a new failure detector that
can be described as an adaptive accrual algorithm. It has been designed
for flexible generic usability as a basis to realise self-healing of distributed
systems. This paper introduces variations of the proposed basic algorithm
to improve its performance and provides an evaluation of all algorithms
using message delay and loss models of the internet.

1 Introduction

Organic Computing (OC) [22,17,23] and Autonomic Computing (AC) [11,14]
both identify the exploding complexity as a major threat for future computer
systems and postulate so-called self-x properties for these systems. To achieve
these goals both the OC [19] and the AC community [14] regard monitoring
information as a basis for organic or autonomic systems.

The Autonomic Middleware for Ubiquitous eNvironments (AMUN) [25], also
called Organic Computing Middleware for Ubiquitous Environments (OCμ), is
a middleware for distributed systems. The OCμ architecture allows to plug in
features as services and monitors to enrich the whole system with certain self-x
properties, e.g. self-configuring [26], self-optimising [27], self-protecting [18], and
self-healing [21].

A failure detection service is one fundamental part of the self-healing capa-
bilities of OCμ. Failure detectors generally provide information on failures of
components of distributed systems. Typically distributed systems consisting of
a finite set of processes or nodes are considered with a local failure detector

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 171–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

172 B. Satzger et al.

attached to each process, see for example [4]. Failure detectors return a list of
processes they are suspecting to have crashed.

This paper proposes variations of the adaptive accrual failure detector pub-
lished in [21]. Accrual failure detectors decouple monitoring and interpretation.
That makes them applicable to a wider area of scenarios and more adequate
to build generic failure detection services. In this paper we evaluate the quality
of the failure detector presented in [21], which we will call in the following ba-
sic failure detector or basic algorithm, in a more comprehensive way than this
has been done before. Furthermore we present variations of the basic algorithm
together with evaluations of these variations.

The paper is organised in five sections. Section 2 gives a short overview of
the state of the art of failure detectors and related work. Section 3 presents the
basic failure detection algorithm that serves as a basis of the proposed variations
of Section 4. Then, Section 5 describes the simulation results. Finally, section 6
concludes the paper and gives an overview of future work.

2 State of the Art and Related Work

Completeness and accuracy. Several impossibility studies [3,15,8] show that per-
fect failure detectors cannot exist in asynchronous distributed systems. The ma-
jor reason is the impossibility to distinct with certainty whether a process has
failed or the communication network is just slow.

Chandra et al. [4] introduced the idea of failure detectors as an unreliable
distributed oracle at which it is possible that (1) a process has failed but is not
suspected as well as (2) a process is suspected but has not failed. Moreover a
failure detector can change its mind for example stopping to suspect a process
it previously suspected. In consequence the authors of [4] characterise failure
detectors by specifying their properties regarding completeness and accuracy.
Completeness refers to failure detectors eventually suspecting crashed processes,
while accuracy restricts the mistakes that a failure detector can make.

Monitoring strategies. There exist two main monitoring approaches for failure
detectors: push and pull. Assuming process p has a failure detector monitoring
q. Using a push failure detector q has to send heartbeat messages to p. This
information is used by p to draw conclusions about q’s status. A simple fail-
ure detection algorithm using the push approach [5] works as follows: q sends
heartbeat messages at regular time intervals Δi to p. When p receives a heart-
beat messages it trusts q for a certain period of time Δto. If this period elapses
without receiving a newer heartbeat p starts to suspect q.

In systems with a pull failure detection (e.g. [12]) the monitored node adopts
a passive role. p monitors q by sending “are you still alive”-messages every Δi.
If p doesn’t receive an answer from q within a certain period of time Δto, p
is suspecting q. Failure detectors using the push paradigm have some benefits
compared to pull failure detectors. They need only half the messages for an
equivalent failure detection quality. Furthermore it is rather hard to determine

www.manaraa.com

Variations and Evaluations of an Adaptive Accrual Failure Detector 173

the timeout Δto as you have to take two messages into account which are both
sent over the network and subject to network delays.

Adaptive failure detection. Adaptive failure detectors [7,5,10] are able to adjust
to changing network conditions. The behavior of a network can be significantly
different during high traffic times as during low traffic times regarding the prob-
ability of message loss, the expected delay for message arrivals, and the variance
of this delay. Thus adaptive failure detectors are highly desirable.

Chen et al. [5] propose a well-known adaptive failure detection approach based
on a probabilistic analysis of network traffic. The protocol uses sampled arrival
times to compute an estimation of the arrival time of the next heartbeat. The
timeout is set according to this estimation plus a constant safety margin, and is
recomputed after each arrival of a new heartbeat.

Bertier et al. [1] combine Chen’s estimation with another estimation developed
by Jacobson [13] for a different context. Their approach is similar to Chen’s,
however, they don’t use a constant safety margin but compute it with Jacobson’s
algorithm.

Accrual failure detection. The principle of an accrual failure detector, introduced
by Hayashibara et al. [10], is not to output whether a process is suspected to have
crashed or not. Rather they give a suspicion information on a continuous scale
whereas higher values indicate a higher probability that the monitored process
has failed.

Hayashibara et al. propose a so-called ϕ failure detector that is based on
an estimation of inter-arrival times assuming that inter-arrivals follow a normal
distribution. They also motivate the benefits of accrual failure detectors over
conventional boolean failure detectors. As principal merit they indicate that
accural failure detectors favour a nearly complete decoupling between application
requirements and the monitoring environment.

Lazy failure detection. Lazy failure detection protocols [7] use application mes-
sages to monitor other processes whenever this is possible.

Our basic algorithm [21] can be classified as an adaptive accrual failure detec-
tor. It uses an approach to compute suspicion information based on a histogram
density estimation. As this failure detection algorithm is further evaluated in
the following and also the basis of the proposed variations in Section 4 it is now
briefly revisited.

3 Basic Failure Detection Algorithm

We are considering two processes p and q where p is monitoring q. The only task
of q is to send heartbeat messages to p every Δi seconds. Process p manages a
list S where the inter-arrival times of the received heartbeats are stored. This
list is called sampling window and has the maximal size η i.e. it always contains
the last η calculated inter-arrival times. Furthermore p stores the time of the
last received heartbeat called freshness point.

Process p computes the failure probability of q by counting the number of
elements in S that are smaller or equal than the time that has been passed since

www.manaraa.com

174 B. Satzger et al.

the last freshness point. This time is denoted with tΔ, the respectively elements
of S with StΔ (StΔ = {x ∈ S | x ≤ tΔ}). The actual failure probability is
the normalised number of elements in StΔ : |S

tΔ |
|S| , where |S| is the current size

of S. The computation of the suspicion value is based on the estimation of the
cumulative distribution function of the inter-arrival times using their cumulative
frequencies.

For a more detailed explanation of this algorithm we refer to [21].

4 Variations of the Basic Algorithm

In the following we present two variations of the basic algorithm explained above.

4.1 A Different Freshness Point Strategy

The first variation of the basic failure detection algorithm that is presented in
the following is inspired by the failure detector of Chen et al. [5]. One prob-
lem with the heartbeat sampling and freshness point strategy as used in the
algorithm described above is the dependence of the failure probability on the
previous heartbeat. Assuming again p is monitoring q and p is waiting for the
i-th heartbeat from q, then the failure probability of q not only depends on the
arrival time of the i-th heartbeat mi, but it is also depending on the past receipt
time of the i − 1-th heartbeat mi−1. In fact this time has a big influence on
the current failure probability. If mi−1 had arrived “fast” then p has to wait a
longer time for mi since the last freshness point which is the receipt time of mi−1
has been set early. Thus the failure probability will become higher as if mi−1
had arrived “late”. In the latter case the freshness point had been set later and
therefore the failure probability was lower.

To circumvent this dependency here it is proposed to use the sending time
plus the average network delay instead of the receipt time for the freshness
point. Being able to do this q has to piggyback the sending time of each heartbeat
according to its local clock. p manages a variable Δ∅ that represents the average
sending delay of messages. With every receipt of a new heartbeat message p
updates the variable Δ∅. Let ts be the time q sent the i-th heartbeat to p
according to q’s local clock. Let tr be the time p received the i-th heartbeat
according to p’s local clock. Furthermore let n be the size of the sampling window.
Then, Δ∅ is calculated as the mean of tr − ts of the last n received heartbeats.
Please notice that the method introduced here to abolish the dependence on the
last heartbeat is not based on synchronised clocks. The freshness point f is now
calculated as f = ts+Δ∅ instead of f = tr assuming the i-th heartbeat has been
received. Thus the freshness point and the failure probability isn’t influenced by
one previous heartbeat arriving early or late. The values of the sampling window
S also change slightly as each sample is calculated as the time that has elapsed
since the last freshness point to the receipt time of the actual heartbeat and the
freshness points are now set differently.

Figure 1 shows the basic failure detection algorithm modified according to the
concepts presented here.

www.manaraa.com

Variations and Evaluations of an Adaptive Accrual Failure Detector 175

Process q:
send heartbeat meassage to p every Δi and append sending time ts to the message

Process p:

f = −1 //freshness point
S = nil //S is initialised as an empty list
η //max size of S (e.g. 1000)
Δ∅ //the average sending delay of the last η sent messages
ts //the sending time according to q’s clock

upon receive heartbeat message mj at time tr

Δ∅ =
Pη

i=1 tr−ts

η

if f == −1 then f = ts + Δ∅

else
tΔ = tr − f
f = ts + Δ∅

append tΔ to S
if size of S > η then remove head of S endif

endif

on call of get failure probability of q at time t

tΔ = t − f
|StΔ | = number elements in S that are lower or equal tΔ

|S| = number of elements in S

return |StΔ |
|S|

Fig. 1. A failure detection algorithm with a different freshness point strategy

The influence of this variation on the performance of our failure detector
will be analysed in Section 5. In the following a second variation of the basic
algorithm is presented that is based on histogram smoothing.

4.2 Histogram Smoothing

In the basic algorithm as described in Section 3 the sampling window S is a list
containing the last η sampled inter-arrival times. To compute a failure probability
the cumulative frequencies of the entries in the sampling window are used. The
resolution level of the cumulative frequencies is at the resolution of the data -
no certain binwidth is used to cluster the data.

But there are some advantages that come along with the division of the data
into bins. Then, the sampling window doesn’t consist of the values of the sam-
pled data, but only the information how many values a bin contains. For in-
stance S = [1.083s, 0.968s, 1.062s, 0.993s, 0.942s, 2.037s, 0.872s] could become to

www.manaraa.com

176 B. Satzger et al.

S = [0s, 1s) : 4, [1s, 2s) : 2, [2s, 3s) : 1, while [0s, 1s) : 4 denotes four arrivals in
the time interval [0s, 1s). It is obvious that the use of such a bin-based repre-
sentation of the data allows for a faster generation of a failure probability. That
is valid due to the fact that the counting of elements that are lower or equal to
a certain elapsed time only depends on the number of bins which is typically
clearly smaller than the number of samples.

Another advantage of the representation of the sampling window as a his-
togram is that it allows for a simple smoothing process. The heartbeat data that
are sampled over time are subject to random variations due to for instance the
unpredictable behaviour of the network. There exist methods for reducing the ef-
fects of random variation of sampled data. The purpose for this is to reveal more
clearly the underlying basic distribution of the data. A technique that can be
used to achieve this is called smoothing that can be used to smooth histograms.
A smoother can be seen as a kind of a weighted averaging process. The aiming
value is transformed by an averaging of the values in its neighbourhood. The
size of the neighbourhood that is taken into account has to be set in an appro-
priate way. The parameter that characterises this amout of neighbouring values
is called smoothing parameter. Generally, the larger the smoothing parameter is,
the smoother the result will be.

A very simple yet fast smoother is described in the following. This simple
technique is suitable to use within the failure detector as the smoothing has
to be repeated basically every time a new hearbeat is arriving. Each band of
the histogram is smoothed by averaging over a moving window. The smoothing
parameter k determines the size of the moving window which is set to 2k + 1.
If the window runs off the end of the histogram bands of size 0 are considered.
For further readings about smoothings techniques we refer to [9,24].

The choice of the smoothing parameter is crucial. The larger the value k is, the
smoother the resulting histogram. However, if k is chosen too large oversmooth-
ing occurs with loss of essential histogram features. With the usage of histogram
smoothing the basic failure detection algorithm only changes in calculating the
failure probability based on the cumulative frequencies of the smoothed his-
togram instead of the unsmoothed cumulative frequencies. Using a smoothing
technique can cause the failure detector to be more robust to random variations.

In the following the presented algorithms are experimentally evaluated.

5 Evaluation

This section presents results of four performance measurements of the
basic failure detection algorithm in comparison with the failure detectors of
Chen et al. [5], Bertier et. al [1], and the accrual ϕ failure detector of Hayashibara
et al. [10] as well as the results of four measurements of the basic failure detector
in comparison with algorithms implementing the variations presented in 4.

5.1 Experiment Setup

There exists an infinite set of environments regarding the computing devices and
their interconnection in which we could test our failure detector. As we didn’t

www.manaraa.com

Variations and Evaluations of an Adaptive Accrual Failure Detector 177

want to pick one test environment we took the decision to generate the data for
the evaluation. This has the benefit that the experiments are reproducible and
independent of any special unique properties.

The data needed for evaluation consists of the arrival times of the heartbeat
messages. We generated the arrival times based on studies of end-to-end inter-
net packet delay and loss behaviour [2,20,16,6]. Bolot [2] and Mukherjee [16]
reason that the internet end-to-end delay distribution they experienced in their
experiments is best modeled by a shifted gamma distribution. Sanghi et al. [20]
encountered packet loss rates between 2.1% and 10.1% in their measurements.
Dam et al. [6] selected a site in the US, sent ping packets at regular intervals and
noted the RTT for each ping packet. The closest gamma distribution fit for the
packet delay of this experiment turned out to be a shifted gamma distribution
with shape parameter 2.0 and scale parameter 2.8.

In the following experiments we distinguish between the unconditional loss
probability and the conditional loss probability [2]. The unconditional loss prob-
ability ULP represents the mean rate at which heartbeats are lost. The condi-
tional loss probability CLP determines the probability with which a heartbeat is
lost given that the previous heartbeat has been lost. This can be used to model
bursty loss behaviour.

We conducted four experiments to compare our basic failure detection algo-
rithm against other state of the art failure detectors. Per experiment we gen-
erated one million heartbeat messages using a shifted gamma distribution with
shape parameter 2.0 and scale parameter 2.8 to model the message delay. The
heartbeat interval Δi has been set to 10 seconds. The experiments differ in the
modeling of the message loss.

Experiment 1.1: ULP and CLP: 2% (non-bursty message loss behaviour).
Experiment 1.2: ULP and CLP: 10% (non-bursty message loss behaviour).
Experiment 1.3: ULP: 2%, CLP: 10% (bursty message loss behaviour).
Experiment 1.4: ULP: 10%, CLP: 50% (bursty message loss behaviour).

Within these settings we compare our basic failure detection algorithm with
the well known failure detectors of Chen et al. [5] and Bertier [1] and the ac-
crual ϕ failure detector of Hayashibara et al. [10]. We measure the algorithms’
performance according to two metrics [5]:

mistakes λM : This measures the numbers of wrong suspicions per second.
detection time TD: This is the average time that elapses since the crash of q

until p starts to suspect q permanently.

Being able to compare the accrual and non-accrual failure detectors we have
to transform the accrual failure detectors into conventional failure detectors.
Therefore you just have to choose a threshold T . If the level of suspicion for q
is lower than this threshold then q is not suspected to have failed. If the level of
suspicion crosses T then q is assumed to have crashed.

The next barrier to compare the algorithms are their different tuning param-
eters. These influence the time when a failure detector starts/ends to suspect a

www.manaraa.com

178 B. Satzger et al.

process. For the accrual failure detectors the tuning parameter is the threshold
T . For Chen’s failure detector the tuning parameter is the safety margin α. This
is a constant period of time that is added to the estimated heartbeat arrival time.
The failure detector of Bertier has no tuning parameters. Being able to compare
the different failure detection algorithms we measure the behaviour of each of
the failure detectors using several values of their respective tuning parameters.

To compute the detection time of the failure detectors we assume that a
crash would occur exactly after successfully sending a heartbeat message. Then
we measure the time it takes until the failure detector reports a suspicion. This
corresponds to the worst case situation. This method to compute the worst-case
detection time has also been used in [10].

Finally we set the window size for all algorithms and experiments to 1000 sam-
ples. This means that the computations of the failure detectors rely only on the
last 1000 heartbeat message samples. Furthermore we start our measurements
not until 1000 heartbeats have been received to grant a warmup phase.

In the same manner as the comparison of the basic failure detection algo-
rithm with Chen’s, Bertier’s, and Hayashibara’s failure detectors we made four
experiments to compare the basic failure detection algorithm with the proposed
modifications of section 4. This means we used exactly the same parameters
to generate the arrival times of the heartbeat messages. These experiments are
named Experiment 2.1 - Experiment 2.4 respectively. The following three algo-
rithms have been used within these experiments:

basic: Our basic failure detection algorithm (see Section 3).
fp: A variation of our basic failure detection algorithm using the different fresh-

ness point strategy (see Section 4).
smooth: A variation of our basic failure detection algorithm using the his-

togram smoothing technique with 100 bins and the smoothing parameter k
set to 2 (see Section 4).

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 12 14 16 18 20 22 24 26

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

our FD
Chen FD

ϕ FD
Bertier FD

Fig. 2. Results of Experiment 1.1

www.manaraa.com

Variations and Evaluations of an Adaptive Accrual Failure Detector 179

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 8e-09

 9e-09

 10 15 20 25 30 35 40

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

our FD
Chen FD

ϕ FD
Bertier FD

Fig. 3. Results of Experiment 1.2

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 12 14 16 18 20 22 24 26 28 30 32

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

our FD
Chen FD

ϕ FD
Bertier FD

Fig. 4. Results of Experiment 1.3

5.2 Results

The results of the performance measurements of the eight conducted experiments
are depicted in the figures 2 to 9. All figures show the detection time on the
horizontal axis and the mistake rate at the vertical axis. Values near the lower
left corner represent a short detection time with few mistakes. Every variation
of the tuning parameters of the failure detectors represents a tradeoff between
the failure detection speed and the mistake rate and produces one datapoint in
the figures of the results of the experiments.

www.manaraa.com

180 B. Satzger et al.

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 3e-09

 3.5e-09

 4e-09

 4.5e-09

 5e-09

 5.5e-09

 10 20 30 40 50 60 70 80 90

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

our FD
Chen FD

ϕ FD
Bertier FD

Fig. 5. Results of Experiment 1.4

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 12 14 16 18 20 22 24

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
fp

smooth

Fig. 6. Results of Experiment 2.1

The results of the experiments 1.1 to 1.4 show an excellent behaviour of our
basic failure detection algorithm compared to the other three algorithms. Apart
from this fact our failure detector is more flexible than Chen’s, Bertier’s, and
other non-accrual failure detectors. In comparison to the ϕ failure detector of

www.manaraa.com

Variations and Evaluations of an Adaptive Accrual Failure Detector 181

 0

 1e-10

 2e-10

 3e-10

 4e-10

 5e-10

 6e-10

 7e-10

 8e-10

 9e-10

 1e-09

 1.1e-09

 20 22 24 26 28 30 32 34 36 38

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
fp

smooth

Fig. 7. Results of Experiment 2.2

 0

 2e-10

 4e-10

 6e-10

 8e-10

 1e-09

 1.2e-09

 1.4e-09

 1.6e-09

 1.8e-09

 2e-09

 10 12 14 16 18 20 22 24 26 28 30 32

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
fp

smooth

Fig. 8. Results of Experiment 2.3

Hayashibara that is also a flexible accrual failure detector our failure detector
provides better evaluation results and is computationally much less expensive.

The results of the experiments 2.1 to 2.4 show that the variation of our basic
failure detection algorithm that uses a different freshness point strategy provides

www.manaraa.com

182 B. Satzger et al.

the best results in these settings. The variant using the histogram smoothing
performs mostly worse than its combatants. Thus we could improve our basic
failure detector using the different freshness point strategy.

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 10 20 30 40 50 60 70 80 90

m
is

ta
ke

 r
at

e
pe

r
se

co
nd

average detection time in seconds

basic
fp

smooth

Fig. 9. Results of Experiment 2.4

6 Conclusions and Future Work

In this paper, we revised our basic adaptive accrual failure detector and made
more comprehensive performance measurements than done before. We intro-
duced two variations of our basic failure detection algorithm. One variation
which uses a different heartbeat strategy serves to abolish the dependence of
the failure probability on the last heartbeat. The histogram smoothing tech-
nique contains the ability for a faster generation of a failure probability, being
more robust to random variations, and consuming less memory. We also con-
ducted performance measurements to evaluate the variations of our basic failure
detector.

The evaluations confirmed the good performance of our failure detector in
comparison to other state of the art failure detectors. Furthermore our basic
algorithm using a different freshness point strategy turned out to outperform
our basic algorithm in the experimental settings.

In future work we plan to adress amongst others the reduction of overhead
of our failure detector and to integrate the failure detector into a self-healing
facility for the OCμ middleware.

www.manaraa.com

Variations and Evaluations of an Adaptive Accrual Failure Detector 183

References

1. M. Bertier, O. Marin, and P. Sens. Implementation and performance evaluation of
an adaptable failure detector. In DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks, pages 354–363, Washington, DC,
USA, 2002. IEEE Computer Society.

2. J.-C. Bolot. End-to-end packet delay and loss behavior in the internet. In SIG-
COMM, pages 289–298, 1993.

3. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, 1996.

4. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

5. W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure
detectors. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN 2000), New York, 2000. IEEE Computer Society Press.

6. K. K. Dam and L. M. Ni. Design and implementation of a network emulator. Tech-
nical Report MSU-CPS-ACS-98-16, Department of Computer Science and Engi-
neering, Michigan State University, May, 1998.

7. C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure detection protocol. In
PRDC ’01: Proceedings of the 2001 Pacific Rim International Symposium on De-
pendable Computing, page 146, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

8. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

9. W. Härdle. Smoothing Techniques with Implementation in S. Springer Verlag,
Berlin, 1991.

10. N. Hayashibara, X. Défago, R. Yared, and T. Katayama. The f accrual failure
detector. In SRDS, pages 66–78. IEEE Computer Society, 2004.

11. P. Horn. Autonomic computing: Ibms perspective on the state of information
technology. http://www.research.ibm.com/autonomic/, 2001.

12. M. Horstmann and M. Kirtland. Dcom architecture. Technical report, http://
msdn.microsoft.com/library/backgrnd/html/ msdn dcomarch.htm, July 1997.

13. V. Jacobson. Congestion avoidance and control. In SIGCOMM ’88: Symposium
proceedings on Communications architectures and protocols, pages 314–329, New
York, NY, USA, 1988. ACM Press.

14. J. O. Kephart. Research challenges of autonomic computing. In ICSE ’05: Pro-
ceedings of the 27th international conference on Software engineering, pages 15–22,
2005.

15. N. Lynch. A hundred impossibility proofs for distributed computing. In PODC ’89:
Proceedings of the eighth annual ACM Symposium on Principles of distributed com-
puting, pages 1–28, New York, NY, USA, 1989. ACM Press.

16. A. Mukherjee. On the dynamics and significance of low frequency components
of internet load. Technical Report MIS-CIS-92-83, University of Pennsylvania,
December, 1992.

17. C. Müller-Schloer, C. von der Malsburg, and R. P. Würtz. Organic computing.
Informatik Spektrum, 27(4):332–336, Aug. 2004.

18. A. Pietzowski, W. Trumler, and T. Ungerer. An artificial immune system and
its integration into an organic middleware for self-protection. In GECCO ’06:
Proceedings of the 8th annual conference on Genetic and evolutionary computation,
pages 129–130, New York, NY, USA, 2006. ACM Press.

http:// msdn.microsoft.com/library/backgrnd/html/ msdn_dcomarch.htm
http:// msdn.microsoft.com/library/backgrnd/html/ msdn_dcomarch.htm

www.manaraa.com

184 B. Satzger et al.

19. U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, and H. Schmeck. Towards a
generic observer/controller architecture for organic computing. In C. Hochberger
and R. Liskowsky, editors, INFORMATIK 2006 – Informatik für Menschen, volume
P-93 of GI-Edition – Lecture Notes in Informatics, pages 112–119, Bonn, Germany,
Sept. 2006. Köllen Verlag.

20. D. Sanghi, A. K. Agrawala, O. Gudmundsson, and B. N. Jain. Experimental
assessment of end-to-end behavior on internet. In INFOCOM, pages 867–874,
1993.

21. B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer. A new adaptive accrual
failure detector for dependable distributed systems. In SAC ’07: Proceedings of the
2006 ACM symposium on Applied computing, New York, NY, USA, 2007. ACM
Press.

22. H. Schmeck. Organic computing-vision and challenge for system design. In Proceed-
ings of the Parallel Computing in Electrical Engineering, International Conference
on (PARELEC 2004), pages 3–3, Washington, DC, USA, 2004. IEEE Computer
Society.

23. H. Schmeck. Organic computing. Künstliche Intelligenz, 05(3):68–69, July 2005.
24. B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman

& Hall/CRC, April 1986.
25. W. Trumler, F. Bagci, J. Petzold, and T. Ungerer. Amun - autonomic middle-

ware for ubiquitous environments applied to the smart doorplate. In Advanced
Engineering Informatics, volume 19, pages 243–252, Washington, DC, USA, 2005.
ELSEVIER.

26. W. Trumler, R. Klaus, and T. Ungerer. Self-configuration via cooperative social
behavior. In Autonomic and Trusted Computing, Third International Conference
(ATC 2006), 2006.

27. W. Trumler, T. Thiemann, and T. Ungerer. An artificial hormone system for
self-organization of networked nodes. In IFIP Conference on Biologically Inspired
Cooperative Computing, pages 85–94, Santiago de Chile, August 2006. Springer-
Verlag.

www.manaraa.com

Self-organizing Software Components
in Distributed Systems

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. This paper presents a framework for deploying software components
over a distributed system by using the notion of dynamics between components.
It enables an application to be composed of one or more mobile components that
can be deployed to different computers when the application is being executed.
The key idea behind the framework is to provide components with deployment
policies corresponding to gravitational and repulsive forces. The polices control
the relocation relation between two components. As a result, a federation of dis-
tributed components can be moved and changed over a distributed system in a
self-organizing manner. This paper also presents a prototype implementation of
the approach and its applications.

1 Introduction

Distributed computing systems are composed of a number of software components
running on different computers and interacting with one another via a network. The
scale and complexity of modern distributed systems impair our ability to deploy com-
ponents to appropriate computers using traditional approaches, such as those that are
centralized and top-down. The structure of a distributed system may also be frequently
changed by adding or removing components and changing the network topology. Ap-
plications, which consist of components running on different computers, must adapt to
such changes. When computers are about to shut down, for example, the components
running on them must be deployed elsewhere. Moreover, the requirements of the ap-
plications tend to vary and changed dynamically. For example, users in a ubiquitous
computing setting may also want to constantly interact with their applications running
on nearby stationary computers. When they move from location to location, the com-
ponents that the application consists of should be dynamically deployed at computers
that are near their current position and can offer the computational resources required
by the components.

To solve these problems, we have developed a framework for dynamically dispers-
ing software components over a distributed system. It provides components with their
own relocation policies without the need of any global policies. As a result, it en-
ables individual components or a group of components to migrate over a network in a
self-organizing manner without losing their previous coordination. We have presented
earlier versions of the framework in this paper in our previous papers [13,15]. These
previous versions supported the attachment of components to other components, but not

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 185–198, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

186 I. Satoh

the detachment of components, unlike this version. This problem is serious in imple-
menting load-balancing and in fault-tolerant systems. The framework supports a mech-
anism for distributing components in addition to that for organizing a moving mass of
components.

This paper describes our design goals (Section 2), the design of the framework,
and a prototype implementation (Section 3). We also describe our experience with it
(Section 4). We then briefly review related work (Section 5), provide a summary, and
discuss some future issues (Section 6).

2 Basic Approach

Most modern large-scale systems consist of software components, which may run on
different computers over a distributed system. The deployment of software components
which a system consists of, seriously affects what a system can achieve and how ef-
ficiently it can achieve this. These components also need to be dynamically deployed
and replaced at computers without them losing any previous coordination according
to changes in the structure of the distributed system and the requirements of the sys-
tem’s applications. However, it is almost impossible for any centralized management
systems to deploy components at appropriate computers because the systems have no
global view of the distributed system as a whole. To solve this problem, our framework
introduces two metaphors, i.e., gravitational and repulsive forces between components
(Fig. 1). The former deploys components that coordinate with one another at the same
computers or those nearby even when they move to other locations. The latter prevents
specified components from being at the same or nearby computers. These component-
deployment approaches are specified and managed as a relocation relationship between
two components. That is, the framework enables each component to explicitly specify
a deployment policy for its own migration as relocation between its current location
and another component’s location. An aggregation of components, each with its own
deployment policies, can change its structure and move over a distributed system in
response to changes in the underlying system and the requirements of the system’s
applications. All the deployment policies presented in this paper are managed in a non-
centralized manner to maintain scalability and reliability.

Most interactions between components in object-oriented systems within a computer
can be covered by three primitives: event passing, method invocation, and stream com-
munication. Our framework enables these primitives to be available in partitioned sys-
tems on different computers. Achieving syntactic and (partial) semantic transparency
for remote interactions requires the use of proxy objects that have the same interfaces
as the remote components. The framework introduces such objects, called references, to
track possibly moving targets and to interact with the these through the three primitives.

Remark
This framework was inspired by our earlier versions presented in previous papers
[13,15]. The previous papers aimed at presenting the middleware for building and op-
erating a large-scale system as a federation of one or more mobile components like
the framework presented here, but they addressed ubiquitous computing environments

www.manaraa.com

Self-organizing Software Components in Distributed Systems 187

Fig. 1. Gravitational and repulsive policies

whose computers are heterogenous rather than large-scale distributed systems. The pre-
vious versions offered some of the gravitational relocation policies supported by this
framework, but lacked any of the repulsive policies, which are essential in support-
ing load-balancing and fault-tolerant mechanisms. In fact, when many components are
organized and deployed over a distributed system by only using the gravitational relo-
cation policies, they tend to gather at several computers.

3 Design and Implementation

This framework consists of two parts: runtime systems and components. Each compo-
nent in the current implementation is a collection of Java objects.

3.1 Component Runtime System

Each runtime system is running on a computer and is responsible for executing and
migrating components to other computers. It establishes at most one TCP connection
with each of its neighboring computers and exchanges control messages, components,
and inter-component communications with these through the connection. Fig. 2 outlines
the basic structure of a runtime system. Each component in the current implementation
is a collection of Java objects in the standard JAR file format and can migrate from
computer to computer and duplicate itself by using mobile agent technology [9].1 When
a component is transferred over the network, the component runtime system on the
sending side marshals the code of the component and its state, e.g., instance variables in
Java objects, into a bit-stream and then transfers them to the destination. The component
runtime system on the receiving side receives and unmarshals the bit-stream so that the
component can continue to be executed at the destination.

3.2 Component Programming Model

Each component runtime system governs all the components inside it and maintains
their life-cycle states. When the life-cycle state of a component changes, e.g., when it is

1 JavaBeans can easily be translated into components in the framework.

www.manaraa.com

188 I. Satoh

Fig. 2. Component runtime system

created, terminates, or migrates to another computer, the runtime system issues specific
events to the component. This is because the component may have to acquire various re-
sources, e.g., files, windows, or sockets, or release ones it had previously acquired. The
current implementation uses Java’s object serialization package for marshaling compo-
nents. This package can save the content of instance variables in a component program
but does not enable the stack frames of threads to be captured. Consequently, runtime
systems cannot serialize the execution states of any thread objects. Instead, when a com-
ponent is marshaled or unmarshaled, the runtime system propagates certain events to its
components instructing them to stop their active threads and it then automatically stops
and marshals them after a given period of time. Each component must be an instance of
a subclass of the MComponent class. Here, we will explain the programming interface
characterizing the framework.

class MComponent extends MobileAgent implements Serializable {
void go(URL url) throws NoSuchHostException { ... }
void duplicate() throws IllegalAccessException { ... }
setPolicy(ComponnetProfile cref, MigrationPolicy mpolicy) { ... }
setTTL(int lifespan) { ... }
void setComponentProfile(ComponentProfile cpf) { ... }
boolean isConformableHost(HostProfile hfs) { ... }
void send(URL url, ComponentID id, Message msg) throws
NoSuchHostException, NoSuchComponentException, ... { }

Object call(URL url, ComponentID id, Message msg) throws
NoSuchHostException, NoSuchComponentException, ... { }

....
}

A component executes go(URL url) to move to the destination host specified as
a url by its runtime system, and duplicate() creates a copy of the component,
including its code and instance variables. The setTTL() specifies the life span, called
time-to-live (TTL), of the component. The life span decrements TTL over time. When
the TTL of a component reaches zero, the component automatically removes itself.

www.manaraa.com

Self-organizing Software Components in Distributed Systems 189

Component migration

Component BComponent A

Component migration

Computer 2Computer 1

Follow policy

Component BComponent A

Computer 3Computer 2Computer 1

Component migration

Component migration

Shift policy

Follow policy Shift policy

Component AComponent BComponent A

Component migration

Component BComponent A
Component migration

Computer 2Computer 1

Dispatch policy

Component BComponent A

Computer 3Computer 2Computer 1

Component migration

Component migration

Fill policy

Dispatch policy Fill policy

Component B
Component A

clone

Component A

clone

Step 1

Step 2

Step 1

Step 2

Step 1

Step 2

Step 1

Step 2
Component B

Component B

Component AComponent A

Fig. 3. Gravitational policies

Each component can have more than one listener object that implements a specific
listener interface to hook certain events issued before or after changes are made in its
life-cycle state. That is, each component host invokes the specified callback methods of
its components when the components are created, destroyed, or migrate to another host.

3.3 Component Deployment Policy

A component can declare its own deployment policy by invoking the setPolicy
method of the MComponent class while a component is running .

Let us now explain four gravitational policies (Fig. 3).

– If one component declares a follow policy for another, when the latter exists or
migrates to a host, the former migrates to the latter’s current or destination host.

– If a component declares a dispatch policy for another, when the latter migrates to
another host, a copy of the former is created and deployed at the latter’s destination
host.

– If a component declares a shift policy for another, when the latter migrates to an-
other host, the former migrates to the latter’s source host.

– If a component declares a fill policy for another, when the latter migrates to another
host, a copy of the former is created and deployed at the latter’s source host.

The framework allows each component to have at most one gravitational policy for at
most one component to reduce conflicts in individual or multiple policies. The follow
policy is useful when relationships between components comprising an application
need to be retained, and the fill policy is useful when components are distributed to
hosts along the tracks of moving components. The deployment of one component de-
pends on the location of another but the deployment of the latter does not need to depend

www.manaraa.com

190 I. Satoh

on the location of the former. Instead, two components can explicitly declare policies
for each other. When a component is created, the dispatch and fill policies can explicitly
control whether the newly created component can inherit the state of its original.

We will next describe two repulsive policies. Each component can have more than
one repulsive policy in addition to either the shift or fill policy.

– If a component declares an exclusive policy for one or more components, when the
former and one of the latter are running on the same host, the former migrates to
another host on which the latter components are not running.

– If a component declares an extinct policy for one or more components, when the
former and one of the latter are running on the same host, the former terminates.

Fig. 4 illustrates these policies. If a component declares two or more polices, these
policies must have different targets. The first corresponds to repulsive force and the
second is used to eliminate components.

Components duplicated by the dispatch or fill policy have this policy for their original
components. Each component can specify a requirement that its destination host must
satisfy by invoking setComponentProfile(), with the requirement specified as
cpf, where it is defined in CC/PP (composite capability/preference profiles) form [17],
which describes the capabilities of the component host and the components’ require-
ments. The class has a service method called isConformableHost(), which the
component uses to determine whether the capabilities of the component host specified
as an instance of the HostProfile class satisfy it requirements. Runtime systems
transform the profiles into their corresponding LISP-like expressions and then evaluate
them by using a LISP-based interpreter. When a component migrates to the destination
according to its policy, if the destination cannot satisfy the requirements of the com-
ponent, the runtime system recommends candidates that are hosts in the same network
domain to the component. If a component declares repulsive policies in addition to a
gravitational policy, the runtime system detects the candidates using the latter’s pol-
icy and then recommends final candidates to the component using the former policy,
assuming that the component is in each of the detected candidates.

3.4 Component Deployment Management

The policy-based deployment of components is managed by each component host with-
out a centralized management server. Each component host periodically advertises its
address to the others through UDP multicasting, and these hosts then return their ad-
dresses and capabilities to the host through a TCP channel.2 (1) When a component
migrates to another component host, each component automatically registers its de-
ployment policy with the destination host. (2) The destination host sends a query mes-
sage to the source host of the visiting component. There are two possible scenarios:
the visiting component has a policy for another component or it is specified in another
component’s policies. (3-a) Since the source host in the first scenario knows the host
running the target component specified in the visiting component’s policy, it asks the

2 We assumed that the components comprising an application would initially be deployed at
hosts within a localized space smaller than the domain of a sub-network.

www.manaraa.com

Self-organizing Software Components in Distributed Systems 191

Component migration

Component BComponent A
Component migration

Computer 3Computer 2

Exclusive policy

Computer 1

Exclusive policy

Component B

terminated

Component BComponent A
Component migration

Computer 2

Extinct policy

Computer 1

Extinct policyExclusive policy

Fig. 4. Repulsive policies

host to send the destination host information about itself and about neighboring hosts
that it knows, e.g., network addresses and capabilities. If the target host has retained
the proxy of a target component that has migrated to another location, it forwards the
message to the destination of the component via the proxy. (3-b) In the second scenario,
the source host multicasts a query message within current or neighboring sub-networks.
If a host has a component whose policy specifies the visiting component, it sends the
destination host information about itself and its neighboring hosts. (4) The destination
host next instructs the visiting component or its clone to migrate to one of the candi-
date destinations recommended by the target host, because this framework treats every
component as an autonomous entity. Moreover, when the capabilities of a candidate
destination do not satisfy all the requirements of the component, the component itself
decides, on the basis of its own configuration policy, whether it will migrate itself to
the destination and adapt itself to the destination’s capabilities. The destination of the
component may go into divergence or vibration mode due to conflicts between some of
a component’s policies, when it has multiple deployment policies. However, the current
implementation does not exclude such divergence or vibration.3

3.5 Intercomponent Communication

The current implementation offers two communication policies for intercomponent in-
teractions as follows:

– If a component declares a forward policy for another, when specified messages are
sent to other components, the messages are forwarded to the latter as well as the
former.

– If a component declares a delegate policy for another, when specified messages are
sent to the former, the messages are forwarded to the latter but not to the former.

The former policy is useful when two components share the same information and the
latter policy provides a master-slave relation between them. The framework provides
three interactions: publish/subscribe for asynchronous event passing, remote method
invocation, and stream-based communication as well as message forward and delegate

3 From our experience with several applications, most components in a system have at most a
gravitational or a repulsive policy. Therefore, we do not always feel the needs to resolve such
conflicts.

www.manaraa.com

192 I. Satoh

Reference update message

Migration-
transparent
coordination

serviceReference

Component A

B

Migration-
transparent
coordination

service

Computer 1

Component B
A

Migration-
transparent
coordination

service

Component Host

Component B
A

Migration-
transparent
coordination

service
Reference

B

Suspend message

Reference

Step 1

Migration-
transparent
coordination

serviceReference

Component A

B

Migration-
transparent
coordination

service

Proxy for

Component B

Migration-
transparent
coordination

service

Migration-
transparent
coordination

service
Reference

Component C

B

Proxy creation

Step 2

Component migration

Component

B

Computer 2 Computer 3 Computer 4

Migration-
transparent
coordination

serviceReference

Component A

B

Migration-
transparent
coordination

service

Proxy for

Component B

Migration-
transparent
coordination

service

Component B
A

Migration-
transparent
coordination

service
Reference

Component C

BReference

Step 3

Arrival message

Suspend message

Reference update message

Resumption message

Migration-
transparent
coordination

serviceReference

Component A

B

Migration-
transparent
coordination

service

Migration-
transparent
coordination

service

Component B
A

Migration-
transparent
coordination

service
Reference

Component C

BReference

Step 4

Arrival message
Resumption message

Component C

Fig. 5. Forwarding messages to migrated component

policies. Each runtime system offers a remote method invocation (RMI) mechanism
through a TCP connection. It is implemented independent of Java’s RMI because this
has no mechanisms for updating references for migrating components. Each runtime
system can maintain a database that stores pairs of identifiers of its connected com-
ponents and the network addresses of their current runtime systems. It also provides
components with references to the other components of the application federation to
which it belongs. Each reference enables the component to interact with the component
that it specifies, even if the components are on different hosts or move to other hosts.

Fig. 5 shows an approach enabling communication between a component moving
from computer 2 to 3 and two components at computers 1 and 3. When a component,
i.e., component B, requests the current runtime system to migrate to another computer,
the system searches its database for the network addresses of runtime systems with
components, i.e., computer 1 and 4. 1) It sends suspend messages to these systems to
block any new uplinks from them to the migrating component with the destination’s ad-
dress. If the moving component contains references, the current runtime system sends
the destination’s address to the runtime systems that are running the components speci-
fied in the references so that they can update their databases. 2) It creates its own proxy
at its current location and It migrates to its destination. 3) After the component arrives at
its destination, it sends an arrival message with the network address of the destination
to the departure runtime system and then update messages to the systems. 4) When the
departure system receives the arrival message, it sends resumption messages with the
address of the destination to runtime systems that may hold references to the moved
component and then remove the proxy.

When a component begins to interact with another that is moving, the former can
send messages to the source of the one that is moving before the basic algorithm above

www.manaraa.com

Self-organizing Software Components in Distributed Systems 193

is completed. To solve this, a migrating component creates and leaves a proxy at the de-
parture runtime system for the duration it takes the algorithm to finish. The proxy com-
ponent receives uplinks from other runtime systems and forwards them to the moved
component. Since not all components have to be tracked for other components to com-
municate with them, components can leave proxy components along their trail under
their own control. Proxy components are also programmable entities, like components,
so they can be modified based on application requirements.

3.6 Security

The current implementation is a prototype system to dynamically deploy the compo-
nents presented in this paper. Nevertheless, it has several security mechanisms. For
example, it can encrypt components before migrating them over the network and it can
then decrypt them after they arrive at their destinations. Moreover, since each compo-
nent is simply a programmable entity, it can explicitly encrypt its individual fields and
migrate itself with these and its own cryptographic procedure. The Java virtual machine
could explicitly restrict components so that they could only access specified resources
to protect computers from malicious components. Although the current implementation
cannot protect components from malicious computers, the runtime system supports au-
thentication mechanisms to migrate components so that all runtime systems can only
send components to, and only receive from, trusted runtime systems.

3.7 Current Status

A prototype implementation of this framework was constructed with Sun’s Java Devel-
oper Kit, version 1.4 or later version.4 Although the current implementation was not
constructed for performance, we evaluated the migration of two components based on
deployment policies. When a component declares a follow, dispatch, shift, or fill pol-
icy for another, the cost of migrating the former or its clone to the destination or the
source of the latter after the latter begins to migrate is 92 ms, 116 ms, 89 ms, 118 ms,
or 136 ms if the policy is follow, dispatch, shift, fill, or exclusive, where the cost of
component migration between two computers over a TCP connection is 35 ms and the
cost of duplicating a component in a computer was less than 7 ms.5 This experiment
was done with three computers (Pentium M-1.8 GHz with Windows XP and JDK ver.5)
connected through a Fast Ethernet network. Migrating components included the cost of
opening a TCP-transmission, marshaling the components, migrating them from their
source computers to their destination computers, unmarshaling them, and verifying
security.

4 Experience

This section presents several example applications that illustrate how the framework
works.

4 The functionalities of the framework, except for subscribe/publish-based remote event passing,
can be implemented on Java Developer Kit version 1.1 or later, including Personal Java.

5 The size of each of the three components was about 8 KB in size.

www.manaraa.com

194 I. Satoh

4.1 Dynamic Deployment for Duplicated Servers

We can easily implement distributed systems. Here, we present a fault-tolerant HTTP-
based server to illustrate the use of these policies by combining gravitational policies,
repulsive policies, and communication policies. Each component supports an HTTP
server. It is a clonable component, where it and its clone declare forward policies for
each other and its clone declares an exclusive policy for it. When a component is dupli-
cated at a host, a clone is created at the host, but its exclusive policy deploys the clone
at another host to distribute the original and cloned components at different computers
to ensure tolerance against faults. When one of these receives messages from external
systems, their forward policies send the messages to another so that they can share the
same states. After the component duplicates itself, the cost of deploying its clone at an-
other host is about 280 ms in the distribution system presented in the previous section.6

This does not include the cost of terminating and restarting the HTTP server. The cost
of forwarding a message is about 28 ms, where this is measured as the round-trip time
and the message has no value. If the components declare delegate policies, they can
support a master-slave instead of a duplication model.

4.2 Ant-Based Routing Mechanisms

Ants are able to locate a path to a food source using the trails of chemical substances
called pheromones that are deposited by other ants. Several researchers have attempted
to use the notion of ant pheromones for network-routing mechanisms [1,2]. Our frame-
work allows moving components to leave themselves on their trails and to become
automatically volatile after their life-spans are over. A component corresponding to an
ant, A, corresponding to a pheromone is attached to another component corresponding
to an ant according to the fill policy. When the latter component randomly selects its
destination and migrates to the selected destination, the former creates a clone and mi-
grates to the source host of the latter. Since each of the cloned components defines its
life-span by invoking setTTL(), they are active for a specified duration after being
created. If there are other components corresponding to pheromones in the host, the vis-
iting component adds their time spans to its own time span. When another component
corresponding to another ant migrates over the network, it can select a host that has
components corresponding to pheromones with the longest time-spans from neighbor-
ing hosts. We experimented with ant-based routing for components using this prototype
implementation with more than eight hosts. However, we knew that it would be difficult
to quickly converge a short-path to the destination in real distributed systems, because
routing mechanisms tend to diverge.

4.3 Component Diffusion in Sensor Networks

The third example is the speculative deployment of components like cell-lamellipodia.
This provides a mechanism that dynamically and speculatively deploys components at
sensor nodes when there are environmental changes. This mechanism was inspired by

6 This experiment assumes that the destination of the clone has been statically derived.

www.manaraa.com

Self-organizing Software Components in Distributed Systems 195

Component AComponent B

Computer 4Computer 3Computer 2Computer 1

Fill policy

Component duplication and migration

Step 1

Component migration

Fill policyStep 2

Step 3 Fill policy

Step 4 Fill policy
Component migration

Step 5

Component duplication and migration

Fill policy

A

A

A

A

B

B

B'

B'

B''

TTL

TTL

TTL

TTL

A

Fig. 6. Implementation of ant-based routing mechanism

lamellipodia in cells. It assumes that the sensor field is a two-dimensional surface com-
posed of sensor nodes and it monitors environmental changes, such as motion in objects
and variations in temperature. It is a well known fact that after a sensor node detects
environmental changes in its area of coverage, some of its geographically neighboring
nodes tend to detect similar changes after a period of time. It deploys monitoring com-
ponents at sensor nodes, where each monitoring component can control and monitor its
current sensor node and has its own TTL. Diffusion occurs as follows. When a compo-
nent detects the presence of its target, it creates a specified number of its clones, e.g.,
two clones, where this number depends on the number of neighboring sensor nodes
(Fig. 7). Each of the clones declares an exclusive policy for other monitoring compo-
nents. It must migrate to a neighboring node according to the policy, because its original
monitoring component is running on its current node. As a result, these clones are de-
ployed at neighboring nodes around the target. When the target moves to another loca-
tion, the monitoring components located at the nodes near the target detect the presence
of the target and create their clones in the same way. We can provide application-specific
components that declares a follow policy to monitor components. These components
can be automatically deployed at nodes near the entity to annotate and assist the target.
Each clone is associated with a resource limit that functions as a generalized TTL field.
Although a node can monitor changes in interesting environments, it sets the TTLs of
its components to their own initial values. It otherwise decrements TTLs as the passage
of time. When the TTL of a component becomes zero, the component automatically
removes itself.

www.manaraa.com

196 I. Satoh

Fig. 7. Component diffusion for moving entity

5 Related Work

There have been several attempts to develop infrastructures for dynamically deploying
components between computers in large-scale computing environments, e.g.,
workstation-clusters and grid computing. Most of them have aimed at dynamically de-
ploying partitioned applications or systems to different computers in distributed systems
to balance computational loads or network traffic. However, as they have explicitly or
implicitly assumed centralized management approaches to deploying partitioned appli-
cations or systems to different computers, they have not allowed all partitioned appli-
cations or systems to have its own deployment approaches.

Of these, the FarGo system introduces a mechanism for distributed applications dy-
namically laid out in a decentralized manner [5]. This is similar to our relocation policy
in the sense that it allows all components to have their own policies, but it is aimed at
allowing one or more components to control a single component, whereas ours aims
at allowing one component to describe its own migration. This is because our frame-
work treats components as autonomous entities that travel from computer to computer
under their own control. This difference is important, because FarGo’s policies may
conflict if two components can declare different relocation policies for one single com-
ponent. Our framework is free of any conflict because each component can only declare
a policy for its own relocation, and not for other components. Several researchers have
introduced the dynamic deployment of partitioned applications as a technology that
enables distributed computers to support various services, which they may not have
initially been designed for, rather than to balance computational loads and traffic in a
distributed system. For example, the Aura project [4] by CMU provides an infrastruc-
ture for binding tasks associated with users and migrating applications from computer to
computer as users move about, like our framework does. Although Aura shares several
common design goals with our framework, it focuses on providing contextual services
to users rather than on integrating multiple computers to support functions and per-
formance unattainable with a single computer. Like our framework, the Gaia project by
the University of Illinois at Urbana-Champaign allows applications to be partitioned be-
tween different computers and move from computer to computer [8]. Gaia assumes that

www.manaraa.com

Self-organizing Software Components in Distributed Systems 197

applications will be constructed based on a design pattern, called MPACC, which is is
an extension of the MVC pattern [6], whereas our framework supports a variety of inter-
actions between partitioned applications so that we do not have to assume any particular
application model.

6 Conclusion

We described a framework for dynamically aggregating distributed applications in a
distributed system based on physical dynamics. It was used to build an application
from mobile software components, which can explicitly have policies for their own
deployment. It enables a federation of components to be dynamically structured in a
self-organized manner and to be deployed at computers as components that have gravi-
tational and repulsive forces between them. We designed and implemented a prototype
system for the framework and demonstrated its effectiveness in several practical appli-
cations. We believe that the framework provides a general and practical infrastructure
for building distributed and mobile applications.

In concluding, we would like to identify further issues that need to be resolved. The
current implementation relies on Java’s security manager. Nevertheless, we are inter-
ested in security mechanisms for components that have their own deployment policies
and plan on introducing various such policies to support adaptive applications over a
distributed system. We also proposed a specification language for the itinerary of mo-
bile software [14]. The language enables more flexible and varied policies for deploying
the components to be defined.

References

1. O. Babaoglu and H. Meling and A. Montresor, Anthill: A Framework for the Development
of Agent-Based Peer-to-Peer Systems, Proceeding of 22th IEEE International Conference on
Distributed Computing Systems, July 2002.

2. G. Di Caro and M. Dorigo, AntNet: A Mobile Agents Approach to Adaptive Routing, Pro-
ceedings of Hawaii International Conference on Systems, pp.74-83, Computer Society Press,
January, 1998.

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison-Wesley, 1995.
4. D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, Project Aura: Towards Distraction-

Free Pervasive Computing, IEEE Pervasive Computing, vol. 1, pp. 22-31, 2002.
5. O. Holder, I. Ben-Shaul, and H. Gazit, System Support for Dynamic Layout of Distributed

Applications, Proceedings of International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Soceity, 1999.

6. G. E. Krasner and S. T. Pope, A Cookbook for Using the Model-View-Controller User In-
terface Paradigma in Smalltalk-80, Journal of Object Oriented Programming, vol.1 No.3, pp.
26-49, 1988.

7. M. Román, C. K. Hess, R. Cerqueira, A. Ranganat R. H. Campbell, K. Nahrstedt K, Gaia:
A Middleware Infrastructure to Enable Active Spaces, IEEE Pervasive Computing, vol. 1,
pp.74-82, 2002.

8. M. Román, H. Ho, R. H. Campbell, Application Mobility in Active Spaces, Proceedings of
International Conference on Mobile and Ubiquitous Multimedia, 2002.

www.manaraa.com

198 I. Satoh

9. I. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Us-
ing a Hierarchical Mobile Agent System, Proceedings of IEEE International Conference on
Distributed Computing Systems (ICDCS’2000), pp.161-168, April 2000.

10. I. Satoh, Building Reusable Mobile Agents for Network Management, IEEE Transactions on
Systems, Man and Cybernetics, vol.33, no. 3, part-C, pp.350-357, August 2003.

11. I. Satoh, Configurable Network Processing for Mobile Agents on the Internet, Cluster Com-
puting, vol. 7, no.1, pp.73-83, Kluwer, January 2004.

12. I. Satoh, Linking Phyical Worlds to Logical Worlds with Mobile Agents, Proceedings of
IEEE International Conference on Mobile Data Management (MDM’2004), pp. 332-343,
IEEE Computer Society, January 2004.

13. I. Satoh, Dynamic Federation of Partitioned Applications in Ubiquitous Computing Environ-
ments, Proceedings of 2nd International Conference on Pervasive Computing and Commu-
nications (PerCom’2004), pp.356-360, IEEE Computer Society, March 2004.

14. I. Satoh, Selection of Mobile Agents, Proceedings of IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’2004), pp.484-493, IEEE Computer Society, March
2004.

15. I. Satoh, Organization and Mobility in Mobile Agent Computing, Programming Multi-Agent
Systems (Postproceedings of 3rd Workshop on ProMAS’05), Lecture Notes in Computer
Science, vol. 3862, pp.187-205, April 2006.

16. C. Szyperski, Component Software, Addison-Wesley, 1998.
17. World Wide Web Consortium (W3C), Composite Capability/Preference Profiles (CC/PP),

http://www.w3.org/TR/NOTE-CCPP, 1999.

www.manaraa.com

Toward Self-adaptive Embedded Systems:

Multi-objective Hardware Evolution

Paul Kaufmann and Marco Platzner

University of Paderborn

Abstract. Evolutionary hardware design reveals the potential to pro-
vide autonomous systems with self-adaptation properties. We first out-
line an architectural concept for an intrinsically evolvable embedded
system that adapts to slow changes in the environment by simulated
evolution, and to rapid changes in available resources by switching to
preevolved alternative circuits. In the main part of the paper, we treat
evolutionary circuit design as a multi-objective optimization problem and
compare two multi-objective optimizers with a reference genetic algo-
rithm. In our experiments, the best results were achieved with TSPEA2,
an optimizer that prefers a single objective while trying to maintain
diversity.

1 Introduction

In the last decades, natural computing methods which take problem solving
principles from nature have gained popularity. Among others, natural computing
includes evolutionary computing. Evolutionary computing covers population-
based, stochastic search algorithms inspired by principles from evolution theory.
An evolutionary algorithm tries to solve a problem by keeping a set (population)
of candidate solutions (individuals) in parallel and improving the quality (fitness)
of the individuals over a number of iterations (generations). To form a new
generation, genetically-inspired operators such as crossover and mutation are
applied to the individuals. A fitness-based selection process steers the population
towards better candidates.

Evolvable hardware denotes the combination of evolutionary algorithms with
reconfigurable hardware technology to construct self-adaptive and self-optimi-
zing hardware systems. The term evolvable hardware was coined by de Garis
[1] and Higuchi [2] in 1993. In the last years, evolutionary techniques have
generated astonishing circuits that are totally different from classically engi-
neered circuits, and sometimes even superior, as presented by Thompson and
Layzell [3]. Moreover, for specifications varying over time, evolutionary tech-
niques achieved very promising results indicating their potential to construct
self-adapting systems. Higuchi and Kajihara [4] presented case studies on evolved
controllers for prosthetic hands and robot navigation. However, several problems

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 199–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

200 P. Kaufmann and M. Platzner

remain to be solved, the major ones being the scalability and the robustness of
evolved hardware.

Our long-term goal is the development of autonomous embedded systems that
implement hardware functions (circuits) characterized by their functional quality
and resource demand. We plan to leverage on three concepts to achieve a flexible
adaptation: First, an intrinsic evolutionary search process adapts the system to
slow changes in the environment. Second, radical changes in available resources
are compensated for by replacing the operational circuit with a preevolved alter-
native which meets the new resource constraints. To this end, we store at any
time an approximated Pareto front of circuit implementations. Third, a reconfig-
urable system on chip platform is the technology allowing for the replacement of
circuits during runtime and for the implementation of an intrinsically evolvable
system.

The main contribution of this paper is the development and comparison of
multi-objective evolutionary techniques for hardware design. In Section 2, we
first outline our architecture concept and then we review the few approaches
that treat evolutionary hardware design as a multi-objective optimization prob-
lem. Section 3 presents our basic hardware representation model and a baseline
genetic algorithm as well as two multi-objective evolutionary optimizers for hard-
ware design. Experiments and results are discussed in Section 4. Finally, Section
5 summarizes the paper and outlines further work.

2 Architecture Concept

2.1 Autonomous Subsystem and Fitness Evaluation

Fig. 1 shows the envisioned architecture concept for an intrinsically evolved
subsystem. The currently instantiated circuit reads input signals from sensors,
computes its function, and writes output signals to actuators. The instantiated
solution has to meet area and speed constraints. The intrinsic evolutionary al-
gorithm (EA) applies the genetic operators selection, crossover and mutation
to the candidate solutions stored in the population data structure. The fitness
evaluation is based on test vectors which are also stored in the subsystem. De-
pending on the application and system resources, the EA can run continuously
or from time to time. At any time, however, the subsystem maintains a set of
approximated Pareto points for the required circuit. Specifically, whenever a new
solution is found with better quality than the currently instantiated one (while
still meeting area and speed constraints), the subsystem’s controller can replace
the instantiated solution with the new one. In case of a rapid change in available
resources, the controller selects one of the circuits from the Pareto set that meets
the new constraints.

The fitness evaluation is highly application-dependent. For any reasonably
sized circuit, we will not be able to store all possible input vectors as test vectors.
A full test coverage is, however, only necessary for functions that reveal a binary

www.manaraa.com

Toward Self-adaptive Embedded Systems 201

Fig. 1. Architecture concept for intrinsic evolution

correctness property. The prime example are arithmetic functions, where we
typically accept nothing less than 100% correctness. Much of the recent work in
evolvable hardware has been concerned with the design of arithmetic circuits. We
use arithmetic functions as test functions for algorithm design and evaluation,
but do not view them as main candidates for autonomous evolution.

The ideal candidates for autonomous evolution are functions that are rated by
a quality metrics rather than a binary correctness. Damiani et al. [5] presented
the example of a hashing function where quality is measured by the ability to dis-
tribute the input keys evenly. Other examples include image compression where
the quality is expressed by the compression rate and prosthetic hand control
of Higuchi and Kajihara [4], where the quality is given by the percentage of
correct classifications. In all these applications, the optimal circuit depends on
input data which varies with time. For these functions it suffices to store a cer-
tain amount of test vectors that can either be static or being sampled during
runtime. For example, Keymeulen et al. [6] designed an adaptive robot control
with the objectives to avoid obstacles and reduce the distance to a given target.
The robot acquires spatial information about its environment, building a model

www.manaraa.com

202 P. Kaufmann and M. Platzner

of it. New robot controllers are evolved and evaluated using this environment
model without necessity of making a real-world test run.

2.2 Multi-objective Hardware Evolution

A central issue in our work is hardware evolution with multiple objectives, e.g.,
functional quality, area and speed. While multi-objective evolutionary optimiz-
ers have been successfully used in system-level synthesis and synthesis of analog
circuits, there are only few projects dealing with multi-objective evolution of
digital circuits. Kalganova and Miller [7] used a multi-stage fitness function to
optimize for circuit correctness and hardware area. They evolved arithmetic cir-
cuits on a two-dimensional array of simple gates with an interconnect restricted
to feed-forward wires. The fitness F of an individual is defined as:

F =
{

c if c < 100%,
c + γ else (1)

The parameter c denotes the percentage of the correct output bits of the circuit
and γ is the number of gates in the array that are not used. As long as the
circuit is incorrect, the selection process bases solely on the functional quality.
Area is taken into account as soon as correctness is ensured. Coello et al. [8]
address the same problem with a multi-objective search algorithm. The initial
single correctness objective is redefined in a way that treats the function of
each circuit output as a separate objective. The evolutionary search algorithm
has to first meet all these objectives, and then area is taken into account. This
approach actually turns constraints into objectives but still uses a multi-stage
fitness function to optimize for area.

In contrast to related work, we use a multi-objective EA to optimize for several
objectives simultaneously. We are most interested in functions without correct-
ness property. Hence, we do not have to turn (correctness) constraints into ob-
jectives. Resource constraints are satisfied by the system’s controller that selects
a proper circuit for instantiation. Research in multi-objective evolutionary algo-
rithms has identified two key issues subsumed by Zitzler et al. [9]: minimizing the
distance between the approximated and the real Pareto front, and maintaining
a diverse population to avoid premature convergence to a single objective. The
remaining part of this paper presents our work in multi-objective optimizers for
evolving digital hardware. This is the central algorithmic challenge in building
the autonomous system outlined in Fig. 1.

3 Evolutionary Hardware Design

We use the Cartesian Genetic Programming (CGP) introduced by Miller and
Thomson [10] in our work. CGP is a structural hardware model where a cir-
cuit is formed by combinational logic blocks arranged in a two-dimensional

www.manaraa.com

Toward Self-adaptive Embedded Systems 203

Fig. 2. 2 × 2 bit-adder evolved on the CGP model

array and an interconnect (wires) between the blocks. The array consists of
nc × nr combinational blocks, ni primary inputs, and no primary outputs. The
primary inputs can be connected to the inputs of any logic block in the array.
A logic block in column c has nn inputs that can be connected to the columns
c− l, . . . , c− 1 of the array and to the primary inputs, respectively. This ensures
that no combinational feedback loops are generated. A combinational block im-
plements one out of nf different logic functions of its inputs. An individual is
defined by its chromosome (genotype) with a length of nc · nr(nn + 1) + no.

Fig. 2 presents an example of a successfully evolved 2×2 bit-adder on a GCP
model instance with ni = 4, no = 4, nc = 5, nr = 4, nn = 2, nf = 9, and l = 4.
The nine possible logic block functions have been chosen as AND, ONE, XOR,
NULL, NAND, NOT, NOR, OR, and XNOR.

In the following, we outline the three algorithms used for evolving circuits:

Reference Algorithm GA is a standard single-objective genetic algorithm. The
parameters are set as follows: The top 5% of the individuals are selected and
transferred without any modification to the next generation. The recombination
probability is chosen to be 90%. The individuals are recombined uniformly. We
choose the mutation rate such that only one combinational block or wire is
mutated each time the mutation operator is applied. In our implementation each
recombined child is mutated once. These parameter settings have been used for
the experiments described in the following section.

SPEA2 is a recent multi-objective evolutionary optimizer introduced by Zitzler
et al. [9] with a structure shown in Fig. 3. SPEA2 maintains two sets of in-
dividuals: an archive that contains non-dominated individuals and a breeding
population. In each generation, the two sets are merged and the fitness of the
individuals is evaluated. The non-dominated individuals are then copied to the
new archive. If the archive exceeds a predefined maximum size, SPEA2 applies a
nearest neighbor density estimation technique to thin out clusters on the Pareto
front. The fitness assigned to an individual considers the number of individuals
it dominates - the dominance count, the number of individuals that are domi-
nators - the dominance rank, and a density estimate based on the k-th nearest
neighbor method. All individuals undergo a binary tournament selection which
selects parents for the recombination and mutation.

www.manaraa.com

204 P. Kaufmann and M. Platzner

Fig. 3. Structure of the SPEA2 and
TSPEA2 optimizers

TSPEA2 is an algorithm we have devised to
put an increased selection pressure on one
objective while trying to keep diversity. This
should be beneficial for evolving circuits with
a correctness property. Compared to SPEA2,
we expect degraded fitness values for the
other objectives. Both SPEA2 and TSPEA2
use an archive and a breeding population and
a selection scheme based on Pareto dominance
ranking. TSPEA2, however, checks as a first
selection rule in a binary tournament whether
one of the two individuals dominates the other
regarding the main objective. TSPEA2 has
been motivated by an earlier algorithm MO-
Turtle GA presented by Trefzer et al. [11],
that preferred a main and several random
objectives during the evolution of analog
circuits.

4 Experiments and Results

We have evolved several test functions with GA, SPEA2, and TSPEA2. In this
section, we report on typical results for a 6-parity function and a hashing func-
tion. While the 6-parity function is an example for a function with a correctness
property, the hashing function is rated by a non-binary quality metrics. The
functional set available for the logic blocks in the CGP model comprises the 9
functions shown in Fig. 2. The parameters for crossover and mutation used in
SPEA2 and TSPEA2 are set as described in Section 3. The tournament selec-
tion operator is configured to execute two tournaments before selecting one of
the competitors as a parent. For all evolutionary algorithms, we conducted 10
optimization runs with a maximum of 100.000 generations.

The delay of a circuit is in the range {0, . . . , nc + 1}. The fitness with respect
to speed is determined as:

speed(c) = 1 − delay(c)
nc + 1

(2)

The speed equals 1 for the fastest possible circuit and 0 for a circuit that has no
connection at all from primary inputs to primary outputs. The number of logic
blocks used by a circuit, denoted as used blocks(c), is in the range {0, . . . , nc ·nr}.
Based on this number, the fitness with respect to area is defined as:

area(c) = 1 − used blocks(c)
nc · nr

(3)

www.manaraa.com

Toward Self-adaptive Embedded Systems 205

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20000 40000 60000 80000 100000

)tcefrep
=1(

ytilauqlanoitcnuf

generations

average GA functional quality
average TSPEA2 functional quality

average SPEA2 functional quality

sp
ee

d
(c

)

area(c)

TSPEA2 individuals
 SPEA2 individuals
 GA individuals

 1.2

 1

 0
 0 1

0.8

0.2

0.4

0.6

0.2 0.4 0.6 0.8

Fig. 4. Evolving the 6-parity function. Data from 10 experiments is shown.

A circuit with minimal area gets an area value of 1, a circuit that utilizes all
available logic blocks has an area value of 0.

4.1 6-Parity

The used parameters for the CGP model are nc = nr = ni = 6, no = 1, nn = 2,
l = nc

2 . For the parity function, a circuit’s c fitness with respect to functional
quality is defined as follows:

f(c) =
1

1 +
∑

i∈B6(parity(i) − c(i))2
. (4)

Thus, a correct parity function has a functional quality of 1. It is an easy task
for a conventional GA to evolve a correct circuit for the 6-parity function. Using
a population of size 100, only 69 generations were needed on average to evolve a
fully functional circuit. In contrast to the GA, SPEA2 with an archive and popu-
lation size of 100 evolved only four correct solutions overall and needed more than
30000 generations on average. With TSPEA2 preferring the functional quality,
the search process converged faster with, on average, 903 generations to evolve
a correct circuit. Fig. 4 shows the development of the average functional qual-
ities for the three algorithms, and the speed and area parameters for correctly
evolved circuits. Both SPEA2 and TSPEA2 found the same dominant solution.
Moreover, TSPEA2 managed to discover a more diverse solution set compared
to SPEA2. The conventional single-objective GA evolved correct circuits with
inferior area and speed.

4.2 Hashing Function

The hashing function has been evolved previously by Tettamanzi et al. [5]. To be
able to compare their experiments with ours, we used the same CGP-parameters:
nc = 8, nr = 8, l = 8 and nn = 4. The difference to our work is that Tettamanzi
et al. restricted wires to connect only to logic blocks in the same row. We have
relaxed this constraint which leads to an improvement using a conventional GA.

www.manaraa.com

206 P. Kaufmann and M. Platzner

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500 600 700 800 900 1000

ytilauqlanoitc nuf

generations

average GA functional quality
average TSPEA2 functional quality

average SPEA2 functional quality

Fig. 5. Evolving the hashing function. Average fitness development over 10 experiments
for GA, SPEA2, and TSPEA2.

The problem statement is as follows: Find a function h : B
16 → B

8 which
maps a set M of 212 keys to a set N of 28 indices in the most uniform way
possible. The fitness function is defined as:

f(c) =
1

1 + 1
|N |

∑|N |
i=1(|{j|j ∈ M, c(j) = i}| − |M|

|N |)
2

(5)

Tettamanzi et al. [5] evolved the best individual with a fitness value of 0.097785
after 257 generations. On our less constrained CGP model, the single-objective
GA reached easily an average fitness beyond 0.1, as is shown in Fig. 5. After 257
generations, the best individual showed a fitness of 0.116469. Fig. 5 shows the
fitness development for GA, SPEA2, and TSPEA2. As expected, TSPEA2 per-
formed close to GA while SPEA2 lagged behind. Fig. 6 displays the functional
quality vs. area and speed. The figure shows two-dimensional projections of the
Pareto front after 1000 generations. As expected, our experiments confirmed
that a conventional GA optimizes the functional quality faster than SPEA2 and
TSPEA2. Although TSPEA2 is close to GA measured in number of simulated
generations, we have to note that simulating one generation in TSPEA2 takes
about an order of magnitude longer than for GA. SPEA2 and TSPEA2 excel,
however, in evolving solutions with improved area and speed. Table 1 lists the
resulting functional qualities (best, worst and average case) after iterating for
1000 generations.

Comparing SPEA2 with TSPEA2, we note that SPEA2 did not evolve individ-
uals with better area or speed. In fact, all individuals found by SPEA2 are dom-
inated by individuals generated by TSPEA2. This is an interesting observation,
as one would expect that TSPEA2, which prefers the functional quality over the

www.manaraa.com

Toward Self-adaptive Embedded Systems 207

GA
TSPEA2 pareto front

SPEA2 pareto front

0.15

0.13

0.12

0.11

0.09

0.1

0.08

0.07

0.4 0.5 0.6 0.7 0.8 0.9 1

0.14

0.15

0.13

0.12

0.11

0.09

0.1

0.08

0.07

0.4 0.5 0.6 0.7 0.8 0.9 1

0.14

fu
nc

tio
na

l q
ua

lit
y

fu
nc

tio
na

l q
ua

lit
y

speed(c)area(c)

Fig. 6. Evolving the hashing function. 2D projections of the Pareto front for two typical
populations. Also the objectives of the best individuals found by GA during the 10
experiments are plotted.

Table 1. Evolving the hashing function. Reached functional qualities after 1000 gen-
erations.

GA SPEA2 TSPEA2

best 0.135 0.084 0.125

worst 0.094 0.075 0.092

average 0.114 0.079 0.110

other objectives, leads to a somewhat deteriorated Pareto front. This result has
been consistent over all simulation runs with the hashing function. A possible
explanation is that in our experiments the objectives are not necessarily con-
flicting. Driving the evolution towards functional quality will then also improve
area and/or speed. However, this may not be generalized as design experience
shows that for many circuits the functional quality, speed and area are indeed
conflicting.

5 Summary and Further Work

In this paper, we have outlined a novel architectural approach for self-adaptive
autonomous embedded systems. Simulated evolution is used to adapt to slow
changes in the environment; switching to preevolved alternatives is the proper
reaction to drastic changes in the available resources. We have then focused
on multi-objective evolutionary optimizers and compared the known algorithm
SPEA2 with the newly devised technique TSPEA2 and a baseline GA. We have
presented comparisons of these algorithms for two test functions.

An implementation of the overall system shown in Fig. 1 is ongoing. Further
work will focus on the scalability problem and investigate variants of the CGP

www.manaraa.com

208 P. Kaufmann and M. Platzner

model with more coarse-granular building blocks. Moreover, we will validate our
observations on larger test functions.

Acknowledgement

This work was supported by the German Research Foundation under project
number PL 471/1-1 within the priority program Organic Computing.

References

1. de Garis, H.: Evolvable Hardware – Genetic Programming of a Darwin Machine. In:
Proceedings International Conference on Artificial Neural Networks and Genetic
Algorithms (ICANNGA), Springer (1993)

2. Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving
Hardware with Genetic Learning: A First Step Towards Building a Darwin Ma-
chine. In: Proceedings 2nd International Conference on Simulation of Adaptive
Behavior (SAB), MIT Press (1993) 417–424

3. Thompson, A., Layzell, P.: Analysis of Unconventional Evolved Electronics. Com-
munications of the ACM 42 (1999) 71–79 ACM Press.

4. Higuchi, T., Kajihara, N.: Evolvable Hardware Chips for Industrial Applications.
Communications of the ACM 42 (1999) 60–66 ACM Press.

5. Damiani, E., Liberali, V., Tettamanzi, A.: Evolutionary Design of Hashing Func-
tion Circuits Using an FPGA. In: International Conference on Evolvable Systems
(ICES), Springer (1998) 36–46

6. Keymeulen, D., Konaka, K., Iwata, M., Kuniyoshi, Y., Higuchi, T.: Robot Learn-
ing Using Gate-Level Evolvable Hardware. In: EWLR-6: Proceedings of the 6th
European Workshop on Learning Robots, London, UK, Springer-Verlag (1998) 173

7. Kalganova, T., Miller, J.: Evolving More Efficient Digital Circuits by Allowing
Circuit Layout Evolution and Multi-Objective Fitness. In: The First NASA/DoD
Workshop on Evolvable Hardware, Pasadena, California, IEEE Computer Society
(1999) 54–63

8. Coello Coello, C.A.: Treating Constraints as Objectives for Single-Objective Evo-
lutionary Optimization. In: Engineering Optimization. Volume 32., Taylor and
Francis (2000) 275–308

9. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich,
Switzerland (2001)

10. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proceedings of
the European Conference on Genetic Programming, London, UK, Springer-Verlag
(2000) 121–132

11. Trefzer, M., Langeheine, J., Meier, K., Schemmel, J.: Operational Amplifiers:
An Example for Multi-objective Optimization on an Analog Evolvable Hardware
Platform. In: International Conference on Evolvable Systems (ICES), Springer
(2005) 86–97

www.manaraa.com

Measurement and Control of Self-organised

Behaviour in Robot Swarms

Moez Mnif1, Urban Richter2, Jürgen Branke2, Hartmut Schmeck2,
and Christian Müller-Schloer1

1 Leibniz Universität Hannover – Institute of Systems Engineering
Appelstr. 4, 30167 Hannover, Germany

{mnif,cms}@sra.uni-hannover.de
2 Universität Karlsruhe (TH) – Institute AIFB

76128 Karlsruhe, Germany
{uri,jbr,schmeck}@aifb.uni-karlsruhe.de

Abstract. Today’s technical systems are becoming increasingly com-
plex. Future systems will consist of a multitude of complex soft- and
hardware components, which interact with each other to satisfy global
system functional requirements. This trend bears the risk of more and
more breakdowns and other unexpected behaviour. Organic Computing
(OC) has the vision of addressing the challenges of complex distributed
systems by making them more life-like (organic), i. e. endowing them
with abilities such as self-organisation, self-configuration, self-repair, or
adaptation. This can only be achieved by giving the system elements
adequate degrees of freedom. This may result in an emergent behaviour,
which can be positive as well as negative. Therefore, we need an ob-
server/controller architecture, which allows for self-organisation but at
the same time enables adequate reactions to control the – sometimes
completely unexpected – emerging global behaviour.

In this paper, we give an introduction to a generic observer/controller
architecture, adapt this framework to a scenario of a self-organising robot
swarm, and show how to control and prevent global, collective, unwanted
behaviour based on observations of the local behaviour of the distributed
agents.

Keywords: Organic Computing, emergence, observer/controller archi-
tecture, multi-agent systems.

1 Introduction

In our everyday life we are surrounded by computers, embedded computing
devices, and other technical environments. The impressive progress in computing
technology over the past decades has not only led to an increase of comfort, but
also to an increase of the complexity of technical systems. The problem of the
increasing system complexity will be one of the main challenges for computer
science for future years. From an engineering point of view, it is yet unclear
how to design such distributed and highly interconnected systems in a manner

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 209–223, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

210 M. Mnif et al.

that makes them reliable and usable in dynamically changing environments.
The designer will neither be able to predict all possible system configurations
nor to prescribe proper behaviours for all cases. Also, we need to relieve the
user of having to control all system parameters in detail, allowing him instead
to influence the system at a higher level, e. g. by setting goals.

Organic Computing (OC) has the vision to address complexity of today’s and
future distributed technical systems by making them more life-like, and endowing
them with properties such as self-organisation, self-configuration, self-repair, or
adaptation [1], and calls therefore for new design principles. OC systems consist
of a large population of interacting components, which organise themselves and
adapt to new situations. To achieve the OC goals it is obvious we need to give
the system components some degrees of freedom. As a consequence, the whole
system can develop an unexpected emergent behaviour, which can be positive as
well as negative. But there are additional drawbacks. In order to adapt to new
situations and to learn new logic and behaviour, a technical system has to be
allowed to make errors, and it may react more slowly. Also, system behaviour
might become less predictable.

Emergent phenomena are often characterised as “the whole is more than the
sum of its parts”, where the study of the local behaviour of the individual com-
ponents reveals little about the global system-wide behaviour. Emergence and
self-organisation have been studied in the area of multi-agent systems [2,3], and
we know many examples from nature, e. g. a flock of birds, the clustering be-
haviour of densely packed chickens in cages [4], or detecting the foraging be-
haviour of ants [5]. Humans decide intuitively on the occurrence of emergence,
but in technical scenarios we need a more coherent definition of this phenomenon.
Inspired by the examples from nature we can say that a precondition for emer-
gence is a large population of interacting elements without central control, and,
following the definition by Müller-Schloer and Sick [6], we define emergence as
self-organised order.

In order to balance creative self-organised bottom-up processes and top-down
control, an observer/controller architecture has been proposed in [7,8], similar to
Autonomic Computing’s MAPE (monitore, analyse, plan, and execute) cycle [9].
The observer monitors the overall system, uses metrics to quantify and detect
emergent behaviour and aggregates its observations as a vector of situation pa-
rameters, which is sent to the controller. The controller evaluates the measured
situation parameters with respect to the goal defined by the user, and attempts
to influence the system, if an intervention is required. In technical applications,
the controller has to use and to compare the results of different metrics to deter-
mine the most appropriate action. But in the scenario of this paper, we simplify
the measurement method and the controller decides based on one metric only.

In this paper, we introduce in Sect. 2 the concept of a generic observer/
controller architecture with the goal to observe emergent effects (positive or
negative), and to control such emergent behaviour with respect to a global ob-
jective function. In Sect. 3 we show how to compute the emergent behaviour
according to an entropy-based measurement method introduced by Mnif and

www.manaraa.com

Measurement and Control of Self-organised Behaviour in Robot Swarms 211

Müller-Schloer [4]. Our test scenario of swarm robots is introduced in Sect. 4.
We explain the idea behind this simulation, describe the implementation using
simple control mechanisms, and present first experimental results that validate
the generic observer/controller architecture. The paper concludes with a sum-
mary and a discussion of future work.

2 Observer/Controller Architecture

To achieve the goals of OC and to endow technical systems with more life-like
properties, they need some degrees of freedom. While this has apparent benefits
and will relieve soft- and hardware designers from specifying every single detail,
unexpected behaviour can occur. Therefore, the process of self-organisation has
to be controlled. As described in [7] we propose a regulatory feedback loop of
observation and control (see also Fig. 1 [8]).

Fig. 1. Observer/controller architecture

The observer measures the collective behaviour (micro and macro level prop-
erties) of the system under observation and control (SuOC) through sensors and
reports aggregated system parameters characterising the global state and the
dynamics of the system to the controller. The controller evaluates the measured
situation parameters with respect to the goal defined by the user and influences
the system through actuators. Together with the layer of observer and controller
the SuOC forms what we call an “organic system”.

Figure 2 shows the generic observer/controller architecture in more detail, and
we refer the interested reader to [8,10] for more information on this architecture.
In the following we summarise just the main principles for a better understanding
of the subsequent sections.

The observer consists of a monitor, a log file, a pre-processor, a data analyser,
a predictor, and an aggregator. Using a prespecified sampling rate system data of
the SuOC is sampled. This data specifies global system attributes, and individual
data monitors attribute values on the level of single elements. For prediction and
calculation of time-space-patterns in the data analyser all monitored data are
stored in a log file. Some derived attributes can be computed from the raw
data in the pre-processing unit (e. g. an attribute velocity can be derived from

www.manaraa.com

212 M. Mnif et al.

Fig. 2. Generic observer/controller architecture

attributes x-coordinate and y-coordinate collected in subsequent time steps). A
set of detectors measures the pre-processed data and computes system detectors
like emergence values with respect to the definition in [4]. In a more or less
simultaneous step a future system state is predicted by the predictor. The results
of data analyser, predictor, and possibly some unprocessed data coming from the
pre-processor are forwarded to the aggregator and transmitted to the controller
as a set of situation parameters.

The controller guides the self-organisation process between the elements of the
SuOC and uses for its decisions the situation parameters from the observer. The
controller interferes only when necessary and may affect the SuOC by influenc-
ing: (1) the local decision rules of the SuOC elements, (2) the system structure
including e. g. the communication between the SuOC elements or the number of
elements, or (3) the environment, which will indirectly influence the system by
changing the data observed by the SuOC elements through their local sensors.

For selecting the Action Ai that is most appropriate for the measured situa-
tion, the controller has to decide quickly and to react in real-time. Every selected
action together with its correspondent situation parameters is stored as a tuple
in a kind of memory for an evaluation process in the following iteration of the
observer/controller loop. The success of an action is determined with respect to
the global objective function, and the adaptation module adapte the mapping
from situations to actions correspondingly. Furthermore, the adaptation module

www.manaraa.com

Measurement and Control of Self-organised Behaviour in Robot Swarms 213

may use a simulation model to anticipate consequences of specific actions before
testing them on the real system, and to plan completely new actions.

The generic architecture has to be customised to different scenarios by adapt-
ing the various components of the observer (including the observation model)
and the controller. In Sect. 4 we describe how we have implemented the ar-
chitecture for a scenario of swarm robots to observe, predict, and control their
emerging clustering behaviour.

3 Quantitative Emergence

Our objective is to quantify emergent behaviour in technical scenarios (e. g.
a swarm of autonomous robots, a large ensemble of elements/agents), and to
trigger certain actions in order to avoid (negative emergence) or to strengthen
(positive emergence) certain system behaviour, whenever a SuOC does not fulfil
the system goal and specified objective function that is given by the human
system developer or designer.

But to do so, we need a definition of “emergence”. Following Müller-Schloer
and Sick [6] traditional and philosophical definitions of emergence are either too
weak or too strong, do not characterise really our technical-oriented approach,
and are not sufficient from the viewpoint of OC which bases its notions on
engineering aspects.

Thus, we propose a definition which is based on measurements of local agent
behaviour, and we define emergence as outlined in Sect. 1 as the formation
of order from disorder based on self-organising processes. The proposed defini-
tion is based on Shannon’s information theory, in particular on the information-
theoretical entropy, and the quantitative definition of emergence is based on the
assumption that unexpected behaviour can be observed in terms of patterns in
space and/or over time. For more details the interested reader is referred to [4].
In the following, we briefly skech the idea for observation of emergent phenomena
by computing a system fingerprint.

One type of detectors which can be used within the data analyser mentioned
in Sect. 2 is the emergence fingerprint which reflects the order pattern of the
common attributes of the system elements. A large population of agents that
interact with each other on the base of local rules and without central control
leads to a macroscopic behaviour that shows new properties which do not exist
at the agent level. This macroscopic pattern is perceived as order and can be
quantified by the emergence fingerprint.

The definition of this fingerprint relies on an entropy measure, a well-known
metric for order. Low entropy is equivalent to a higher system order and vice
versa. With other words: The more structure is present (unequal distribution),
the more order is present. The fingerprint’s change over time gives an indication
of the dynamics of the system (e. g. transition from chaotic to an ordered state).

The main idea of computing the fingerprint of a system is first to identify
the common attributes of its elements, second to build for each attribute a
relative frequency of the occurrence of each value (which can be considered as a

www.manaraa.com

214 M. Mnif et al.

probability distribution), third to compute the entropy related to each attribute
on basis of Shannon’s information theoretical definition of the entropy:

HA =
j=N−1∑

j=0

pj · ld
1
pj

(1)

in which A represents a given attribute and N the number of the different at-
tribute values (the unit of measurement is bit/attribute). Finally, one has to
compute the degree of emergent order of each attribute according to:

MA = HAmax − HA (2)

HAmax is the entropy of the attribute A in case of an equal distribution of at-
tribute values (lowest level of order). The set of all Mk (k denoting an attribute)
values of the SuOC constitutes a vector which is called system fingerprint (see
also Fig. 3). Instead of the emergence M , we can also compute a relative emer-
gence m according to:

mA =
HAmax − HA

HAmax

(0 ≤ mA ≤ 1) (3)

In Sect. 4 we use such a fingerprint to quantify and to control the emergent
behaviour of a swarm of autonomous robots.

Fig. 3. Fingerprint with different attributes at three specific times, visualised as a n-
dimensional Kiviat graph (one dimension for each attribute). The fingerprint shows
e. g. the attributes x, y, direction, colour, etc., and the emergence fingerprint at the
times time0, time1 and time2.

4 Experimental Results

In this section, we describe how to implement the generic OC architecture in a
technical domain: a swarm of robots. The application described below is inspired
by nature, and shows clustering from a macroscopic point of view as an emergent

www.manaraa.com

Measurement and Control of Self-organised Behaviour in Robot Swarms 215

behaviour of local interactions. The goal of our work is to get a better under-
standing of the global emergent behaviour of distributed agents. Our chosen
application serves also as a test bed to validate the generic observer/controller
architecture from Sect. 2.

The simulation reproduces the collective cannibalistic behaviour of densely
packed chickens in cages (cooperation with the University of Veterinary Medicine
Hannover), and tries to explain the unwanted behaviour of clustering, which is
frequently observed when a chicken is wounded, and which leads to a major loss
of animals (up to 50% of the animals). If chickens perceive a wounded chicken,
they chase this chicken and pick on it until it dies.

Chasing and picking wounded chickens leads to the emergent building of
chicken swarms (or clusters). A swarm disperses when the wounded chicken is
killed. The emergent behaviour is spatial, but swarms move over time. This is a
case of “negative”, i. e. unwanted, emergence, because the global goal should be
to reduce the chicken death rate.

While simulating this behaviour, order patterns emerge as expected in form
of chicken swarms. In agriculture at the moment these patterns are interpreted
by human experts. But our goal from the viewpoint of OC is to observe, classify,
and control this behaviour automatically. To achieve the goal of maximising
the lifetime of chickens, we use the observer/controller paradigm. The observer
reports a quantified context of the underlying system to the controller. The
controller evaluates the situation and reacts with adequate control actions to
disperse chicken swarms or to prevent their formation.

Certainly, OC focuses on the problem of increasing complexity in technical
scenarios, and we admit that the chicken simulation has no obvious technical
relevance on its own. But, in the simulation, a chicken is directed by a prede-
fined set of rules, and will be influenced by the behaviour of other chickens in
its local neighbourhood or by changes in the environment, e. g. by noise that
frightens them and feed that attracts them. Therefore, chicken are considered
as autonomous robots or agents with simple rules und local goals, they aim for
surviving as long as possible and they are attracted by wounded conspecifics.

There are many analoguous technical scenarios with a similar structure, as de-
scribed e. g. in [11]. This analogy justifies from our point of view our biologically
inspired simulation and shows a technical relevance.

4.1 Experimental Environment

We should mention that the notions of robot, agent, or chicken have the same
meaning in our context. We use the item ‘chicken’ in analogy to the bio-inspired
paradigm, but we abstract from the animal and presume that the chicken is
an autonomous robot or a technical agent, which shows no life of its own and
instead reacts as specified by its developer.

A chicken is characterised by the attributes position (x-, y-coordinates), head-
ing and energy, and works according to the finite state machine (FSM), depicted
in Fig. 4. Whether a chicken is wounded or not depends on its energy level. We
have defined 5 different internal states of a chicken:

www.manaraa.com

216 M. Mnif et al.

idle wounded
energy == 0

energy == MAX_ENERGY

energy =< WOUNDED_ENERGY

wounded chicken perceived
or

following chicken perceived

no wounded chicken perceived
and

no following chicken perceived

follower

frightened
noise

no noise
noise

noise

disturbed

disturbance duration elapsed

Fig. 4. Finite state machine of a chicken representing the local behaviour rules of a
single chicken

Idle: In this state a chicken is not wounded. The chicken moves according
to a simple mobility model, is initially placed at a random position in the
cage/playground, and chooses randomly a new position to move in its direct
neighbourhood. Arrived at its destination the chicken chooses another random
one for the next simulation step. In one simulation step a chicken can move from
one field to the fields in its direct neighbourhood. Typically, a chicken can choose
its new position from a set of 8 possible positions, or it stays where it is.

Follower : A chicken moves to this state if a wounded chicken or a following
chicken is perceived (the distance to this chicken is lower than a fixed perception
horizon given as simulation parameter). Then the chicken tries to get as near
as possible to the wounded (or the following) chicken, it minimises the distance
between the injured chicken and itself. If it is immediately close to the wounded
chicken it begins to pick on it (and the wounded chicken looses energy).

Wounded : A chicken gets to the wounded state if its energy level passes a thresh-
old that is lower than a given energy level, which is set by a simulation parameter
(see Tab. 1). In this case the wounded chicken tries to escape attacks, it max-
imises the distance between itself and the chickens in its direct neighbourhood,
and it heals with each tick of the simulation (incrementation of energy), only if
it is not picked.

Frightened : A chicken gets frightened, if it perceives noise. It moves as fast as
possible (one field per simulation step) outside the fields that are affected by
noise. If the chicken has been in the state of a follower, it tries to maximise the
distance between the wounded chicken and itself.

Disturbed : After leaving the noise affected fields a chicken changes to the dis-
turbed state for a fixed duration (see Tab. 1). A chicken doesn’t react to wounded
chickens and moves randomly as it does when idle.

www.manaraa.com

Measurement and Control of Self-organised Behaviour in Robot Swarms 217

Table 1. Simulation parameters

Agent number 20

Playground 30 × 30 fields

Simulation time 1000 ticks

Generation of wounded chickens Every 60 ticks after a wounded chicken
is killed or healed

Maximal number of concurrently
wounded chickens

1

Maximal energy level of a wounded
chicken

100 energy units

Energy lost per received pick 1 energy unit

Energy level of randomly generated
wounded chicken

70-80 energy units
(Uniformely distributed)

Healing rate 1 energy unit/tick

Perception horizon of a chicken 15

Number of directions 8

Duration of noise control 15 ticks

Intensity of noise control Circular area with a radius of 7 fields

Critical emergence threshold 0.42

Disturbance duration of a chicken after
a controller intervention

5 ticks

Waiting time after a controller
intervention

2× duration of noise control

To achieve first experimental results we simplify our scenario and blind out the
effects of feed. That is the reason why the FSM, as pointed out, is quite simple
and has 6 different states only. The behaviour with feed will be integrated into
future simulations.

Our simulation environment is set up with the parameters as listed in Tab. 1.
We observe a scenario of 20 chickens that move randomly in the playground,
which has the dimension of 30 × 30 fields (see Fig. 5). Typically, every chicken
can move to eight different directions (e. g. see the possible next positions of
chicken 9 in Fig. 5). If a chicken is set to a border or it reaches an edge of the
playground it is obvious that five (see chicken 17) or three possible movements
are left for these special situations. All chickens move with the same speed.

4.2 Observer/Controller Architecture Applied to Scenario

The generic observer/controller architecture is applied to the scenario as de-
picted in Fig. 6. The monitor collects data from the system at a fixed sampling
rate (one data set each simulation tick). This data set consists of a system-wide
attribute (the number of chicken killed in the last sampling period) and of indi-
vidual attributes of each chicken (x-coordinate, y-coordinate and heading). The
functionality of the pre-processor is reduced to passing the individual parameters
to the data analyser and the number of killed chicken to the aggregator. The
data analyser determines the emergence fingerprint of the system by computing

www.manaraa.com

218 M. Mnif et al.

Fig. 5. Scenario with 20 chickens and 4 feeding dishes

the emergence indicators of the collected three chicken attributes. Also, the data
analyser uses the x- and y-coordinates to determine the coordinates of cluster
centroids. For calculation we use the K-Means clustering algorithm. The re-
sults of the data analyser (three emergence indicators and the available cluster
centroids) are passed to the aggregator. The aggregator forwards the situation
parameters, composed of the computed data analyser values and the number of
killed chickens, to the controller.

To close the observer/controller loop and to obtain first experimental results
we have implemented a controller with reduced functionality, which includes ba-
sically a simple mapping and a mechanism to prevent overshooting of control
actions. The controller waits for a fixed duration before interfering again. Min-
imising the number of killed chickens is defined as the global goal, given by the
developer, and leads to the following control logic: If the emergence indicator of
the x-coordinates is ≥ 0.42, a noise signal with fixed intensity and fixed duration
is applied around the computed cluster centroid to frighten the chickens and dis-
perse the cluster. We plan to automate this control action with more degrees of
freedom and to integrate a learning process to adapt intensity and duration of
the noise signal.

For the duration of noise control some fields of the playground around the
cluster centroid and within a fixed radius are highlighted with a noise flag. A
chicken reacts to this flag and uses this information within its decisions of move-
ment and behaviour during the duration of noise control. A chicken changes its
status to frightened, if it percieves noise, and moves one field per simulation step
outside the fields that are highlighted with noise. All chickens try to maximise

www.manaraa.com

Measurement and Control of Self-organised Behaviour in Robot Swarms 219

Fig. 6. The generic architecture applied to the chicken scenario

the distance between the wounded chicken and themselves. They move as fast as
possible to fields which are not highlighted, and change their status to disturbed.

4.3 Observation of Emergence

Typical values of the relative emergence indicator of the x-coordinates can be
seen in Fig. 7(a). The figure shows the trend for one run of simulation. We can
observe the recurrence of a cycle that constitutes of three phases: The cluster
formation phase (the curve increases from 0.25 to 0.42 or higher), a cluster phase
(the values oscillate on a high level), and a dispersion phase (the curve decreases
from a high level to a low one). The interpolated values show a more exact
disjunction of the three phases, as depicted in Fig. 8(a).

During the absence of a wounded chicken the chickens are uniformly dis-
tributed over the area. After the appearance of a wounded chicken a cluster is
formed after a short delay and the emergence indicator increases. After each
cluster phase a chicken is killed (see Fig. 9(a)), and after a short distribution
phase a new cycle begins.

From these observations we learn that a control intervention should be trig-
gered when a certain emergence value is exceeded. Tests have suggested that a
well working critical emergence threshold is located close to 0.42.

www.manaraa.com

220 M. Mnif et al.

(a) Without control intervention (b) With noise intervention

Fig. 7. Emergence values over time

(a) Without control intervention (b) With noise intervention

Fig. 8. Interpolated emergence values over time

4.4 Emergence with Noise Intervention

The controller interferes only if the observer measures a cluster and the speci-
fied threshold is exceeded. Using a freely applicable noise emitter with an interim
fixed intensity the chickens are frightened and the cluster disperses. Other control
actions to influence the behaviour of the chickens are imaginable, e. g. attracting
them with feed in the area around a cluster, but so far not integrated into the
simulation. In comparison with Fig. 7(a) the emergence values with noise inter-
vention show no possible separation into three phases any more (see Fig. 7(b)).
The interpolated curve in Fig. 8(b) shows this effect in detail. The values are
characterised by continuous increasing and decreasing phases. The cluster phase
is left out.

Comparing Fig. 9(a) with Fig. 9(b) we observe a significantly lower death rate
and notice that the death rate has decreased due to the control interventions.
However, not all interventions have been successful, and for some cases many
control interventions have been necessary to deal with the emergent situation

(a) Without control intervention (b) With noise intervention

Fig. 9. Death rate over time

www.manaraa.com

Measurement and Control of Self-organised Behaviour in Robot Swarms 221

(e. g. see the occurrence of two successive cluster phases between time 400 and
600). Whether a controller decision is successful or not depends on the energy
status of the wounded chicken. And the odds that a chicken will heal during
the duratioon of a controller intervention depend on how many other chickens
run away randomly in the same direction as the wounded chicken does, so that
they can attack it again after getting out of the intervention area and after the
disturbance time has elapsed.

5 Conclusion and Outlook

In this paper we have given a short introduction to OC and have summarised
the main goals of the OC community, namely to tame particularly increasing
complexity in technical systems. To cope with the possibility of emerging global
behaviour as a result of bestowing upon the systems some life-like character-
istics, the paper outlines the idea of an observer/controller architecture. This
architecture allows for organising several aspects of the system behaviour in an
autonomous way, independent of an explicit external interference that keeps a
system alive and running. The SuOC adapts to changes in its environment in
order to acquire robustness and the ability to overcome breakdowns.

We have adapted the generic approach of the observer/controller architecture
to a scenario of a swarm of simple robots, which present a macroscopic behaviour
that depends only on local rules. The robots are attracted by “injured” ones and
frightened by noise.

Providing feedback and decision capabilities to this technical scenario we have
shown that the unwanted emergent behaviour, clustering of robots around in-
jured agents, can be observed and prevented automatically with respect to a
global objective function. We have used an entropy-based measurement method
to observe the described order pattern. For controlling the robots we have im-
plemented a simple method that changes the environment and affects their local
behaviour indirectly.

In this paper we presented first steps towards a complete observer/controller
loop applied to a concrete test scenario. Our simulation results validate the
idea of the proposed generic observer/controller architecture, and we could show
advantages and potentials of controlled self-organisation in technical scenarios.
Without control actions the robots will meet in a cluster, hinder or attack each
other, and the system might break down. The controller extends the life of the
robots and keeps on running the system.

Our future work will focus on the following challenges:

– Endow the controller with adaptation capability. The controller should have
the possibility to evaluate the success of its interventions and to adapt the
fitness and the parameters of the used rules depending on the global ob-
jective function. This suggests the ability of online learning. The controller
should also be able to generate new rules with adequate parameters (e. g.
the controller should learn the correlation between the increasing of the

www.manaraa.com

222 M. Mnif et al.

x-emergence over a critical value of 0.42 and the death of a chicken as shown
in Sect. 4.4). Adaptation over the time will optimise the controller’s be-
haviour and the guided process of self-organisation.

– Endow the simulation with other control possibilities. At the moment the
controller has only the possibility to control the swarm of robots with noise.
In analogy to the introduced chicken behaviour other control actions are pos-
sible, e. g. the controller can spread some feed around the cluster to attract
the robots in another direction.

– To make the scenario more complex and to enhance the task of the ob-
server/controller architecture we plan to integrate distributed and collective
learning to the robots. Robots with local adaptation will show a more com-
plex – and thus challenging – behaviour.

Acknowledgment: We gratefully acknowledge the financial support by the
German Research Foundation (DFG) within the priority program 1183 “Organic
Computing”. We are especially indebted to Fabian Rochner, Leibniz Universität
Hannover, and Holger Prothmann, Universität Karlsruhe (TH), for their valuable
suggestions.

References

1. Schmeck, H.: Organic Computing – A new vision for distributed embedded systems.
In: Proceedings of the 8th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2005), IEEE Computer Society (2005)
201–203

2. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organisation and
emergence in MAS: An overview. Informatica 30(1) (2006) 45–54

3. Di Marzo Serugendo, G., Foukia, N., Hassas, S., Karageorgos, A., Kouadri
Mostéfaoui, S., Rana, O.F., Ulieru, M., Valckenaers, P., Van Aart, C.: Self-
organisation: Paradigms and applications. In Di Marzo Serugendo, G., Kara-
georgos, A., Rana, O.F., Zambonelli, F., eds.: Postproceedings of the Engineering
Self-Organising Applications (ESOA 2003) Workshop at the Second International
Joint Conference on Autonomous Agents & Multi-Agent Systems (AAMAS 2003).
Volume 2977 of LNAI., Springer (2004) 1–19

4. Mnif, M., Müller-Schloer, C.: Quantitative emergence. In: Proceedings of the
2006 IEEE Mountain Workshop on Adaptive and Learning Systems (IEEE SMCals
2006). (2006) 78–84

5. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of
cooperating agents. Technical Report 26 1, IEEE Transactions on Systems (1996)

6. Müller-Schloer, C., Sick, B.: Emergence in Organic Computing systems: Discus-
sion of a controversial concept. In Yang, L.T., Jin, H., Ma, J., Ungerer, T., eds.:
Proceedings of the 3rd International Conference on Autonomic and Trusted Com-
puting (ATC 2006). Volume 4158 of LNCS., Springer (2006) 1–16

7. Müller-Schloer, C.: Organic Computing: On the feasibility of controlled emergence.
In Orailoglu, A., Chou, P.H., Eles, P., Jantsch, A., eds.: Proceedings of the 2nd
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS 2004), ACM (2004) 2–5

www.manaraa.com

Measurement and Control of Self-organised Behaviour in Robot Swarms 223

8. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
generic observer/controller architecture for Organic Computing. In Hochberger,
C., Liskowsky, R., eds.: INFORMATIK 2006 – Informatik für Menschen! Volume
P-93 of GI-Edition – Lecture Notes in Informatics (LNI)., Köllen Verlag (2006)
112–119

9. Sterritt, R.: Autonomic Computing. Innovations in systems and software engineer-
ing 1(1) (2005) 79–88

10. Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner,
F., Schmeck, H.: Organic Computing – Addressing complexity by controlled self-
organization. In: Proceedings of the 2nd International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2006). (2006)

11. Jäger, M.: Kooperierende Roboter: Gemeinsame Erledigung einer Reinigungsauf-
gabe. KI 18(2) (2004) 59–60

www.manaraa.com

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 224 – 239, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Autonomous Learning of Load and Traffic Patterns to
Improve Cluster Utilization*

Andrew Sohn1, Hukeun Kwak2, and Kyusik Chung2

1 Computer Science Department, New Jersey Institute of Technology,
Newark, NJ 07102, U.S.A.

2 School of Electronic Engineering, Soongsil University, 511 Sangdo-dong, Dongjak-gu,
Seoul 156-743, Korea

sohn@cs.njit.edu, {gobarian, kchung}@q.ssu.ac.kr

Abstract. Adaptive clustering aims at improving cluster utilization for varying
load and traffic patterns. Locality-based least-connection with replication
(LBLCR) scheduling that comes with Linux is designed to help improve cluster
utilization through adaptive clustering. A key issue with LBLCR, however, is
that cluster performance depends much on a single threshold value that is used
to determine adaptation. Once set, the threshold remains fixed regardless of the
load and traffic patterns. If a cluster of PCs is to adapt to different traffic
patterns for high utilization, a good threshold has to be selected and used
dynamically. We present in this report an adaptive clustering framework that
autonomously learns and adapts to different load and traffic patterns at runtime
with no administrator intervention. Cluster is configured once and for all. As
the patterns change the cluster automatically expands/contracts to meet the
changing demands. At the same time, the patterns are proactively learned that
when similar patterns emerge in the future, the cluster knows what to do to
improve utilization. We have implemented this autonomous learning method
and compared with LBLCR using published Web traces. Experimental results
indicate that our autonomous learning method shows high performance
scalability and adaptability for different patterns. On the other hand LBLCR-
based clustering suffers from performance scalability and adaptability for
different traffic patterns since it is not designed to obtain good threshold values
and use them at runtime.

1 Introduction

Improving the utilization of computing resources [7] is a critical part of building and
managing computational infrastructure. Invariably, computational demands on a cluster
of PCs change at runtime. Some machines will be under utilized while others over
utilized. Numerous approaches have been reported to date to solve this utilization
problem from various different perspectives, including adaptive infrastructure, utility
computing, virtualization, process migration, adaptive clustering, etc.

*
 Hukeun Kwak and Kyusik Chung are supported in part by the Basic Research Program of the
Korea Science & Engineering Foundation grant No.R01-2006-000-11167-0.

www.manaraa.com

 Autonomous Learning of Load and Traffic Patterns to Improve Cluster Utilization 225

The N1 Grid initiative by Sun is an example of such technology that can elastically
manage computing resources on the fly [18]. Utility computing and adaptive
enterprise being deployed by HP are centered on the concepts of treating computing
resources as definable and controllable units such as electricity or water [10]. In
recent years, IBM has been actively working on their on-demand computing, which
attempts to maximize utilization of computing resources as well as automatically
detect faults and subsequently heal them [8]. The Gray-box system by Wisconsin [2]
and the black-box model by HP [12] help automatically manage the performance of
computing services. Process migration is designed to solve the utilization problem. A
particular process that causes overload can be migrated to an idle machine. Or, other
processes on that machine can be migrated to another one so that all the resources can
be made available to the resource-intensive process. Projects such as Wisconsin’s
Condor [15] and OpenMosix [17] along with Checkpointing [4] have been deployed
to migrate processes in various real settings. Virtualization enables multiple “guest”
operating systems or virtual machines to run on a “host” operating system that runs
on a physical machine [1]. If a particular physical machine in a cluster is overloaded,
moving the overloaded guest operating system to a less loaded physical machine can
help solve the utilization problem. The open source community has been working on
Xen, User-mode Linux (UML), Bochs, Plex86, etc. Commercial products include
IBM360, VMware, Microsoft’s Virtual PC, Sun Containers, etc. Hardware supports
for virtualization include Intel’s VT and AMD’s Pacifica through multi-core
processors.

Adaptive clustering aims at improving cluster utilization by changing the number
of physical machines for different traffic patterns in the cluster [20]. Initially, a
cluster of servers is set up for various services and a subset of servers, or server set,
is designated for a particular service. If the demand for a particular service exceeds
the threshold of a server set, the front-end load balancer will automatically recruit
another server from the cluster that may be a part of other server set(s), resulting in
expansion. When the demand recedes, the particular server set will contract,
releasing the newly recruited server to the cluster. Locality-based least connection
with replication (LBLCR) scheduling that comes with Linux is designed to adapt to
different traffic patterns in cluster [9]. Linux Virtual Server (LVS)-based load
balancer [14] distributes client requests to back-end servers based on the number of
connections between the LVS load balancer and the back-end servers. The decision
as to which server to send the request is made based solely on the number of
connections, or threshold, regardless of the implications of each connection. If the
current traffic is beyond the predetermined threshold, LBLCR scheduling calls for
an expansion of server set for that particular service. This threshold value is chosen
at the time of initial cluster configuration. Once set, it stays the same regardless of
the traffic patterns and the cluster condition. Since the performance of cluster
hinges on this single value, the system administrator must carefully choose this
value through extensive experiments, searching the Web, or ask other experienced
administrators.

It is precisely the purpose of this study to solve this single threshold problem. We
introduce a learning method that allows the cluster to autonomously adapt to different

www.manaraa.com

226 A. Sohn, H. Kwak, and K. Chung

traffic and load patterns at runtime with no administrator intervention. Our approach
is in two fold. First, we use both CPU usage and number of connections to accurately
assess the entire cluster usage, instead of connections only as done in LBLCR.
Second, threshold value is autonomously determined and updated at runtime for
different load and traffic patterns with no human intervention.

The report is organized as follows. Section 2 presents background materials on
LBLCR scheduling. In Section 3, we explain our approach in detail. In section 4, we
provide our experimental environment and results using publicly known Web traces.
In Section 5, we analyze our results and compare with LBLCR and simple-minded
Round-Robin. The last section concludes our work.

2 Adaptive Clustering with LBLCR Scheduling

An experimental environment consists of NC client machines, a front-end LVS-based
load balancer, a cluster of NS backend servers, and a Web server. Clients send
requests to the LVS. The LVS-based load balancer distributes requests to one of the
servers [5]. The load balancer can be mirrored to provide high availability. Initially, a
cluster is set up for various services. There will be multiple server sets, each of which
will be designated for a particular service.

If the demand for a particular service exceeds the threshold of a server set, the
front-end load balancer will automatically recruit another server from the cluster,
resulting in server set expansion. When the demand recedes, the server set will
contract, releasing the newly recruited server to the cluster.

Locality-based least connection with replication (LBLCR) scheduling [11] is
designed to adapt to new traffic patterns. When a request is received from the client,
the LVS load balancer checks if this is the first time or repeated. For the first time
requests LVS determines a target server. The decision is based on the number of
connections between the LVS and a back-end server. To be more precise, the LVS
computes the connectivity

active weight inactiveV C A C= × + for all servers, where Cactive is the

number of active connections and Cinactive is the inactive number of connections
between the LVS and the server. LVS selects a server with the lowest V regardless of
the nature of connections. For repeated requests, LVS directs them to the server that
has already been assigned earlier. Suppose that a certain service/page/site/content is
popular and there are many requests destined to the same server. The target server
will soon be overloaded and some requests may not be served in a reasonable time
period or may even be dropped. To prevent this potential server overload, LVS uses
LBLCR scheduling to increase the number of servers for this particular service. First,
LVS determines if the target server is overloaded. The decision is based on comparing
Cactive and Htarget, where Cactive is the number of active connections between LVS and
the target server and Htarget is the predetermined threshold for the target server. If
Cactive > Htarget, it is clear that the target server is deemed overloaded. LVS initiates an
adaptation process, which entails two steps: first, LVS computes the connectivity V
for all servers. Second, LVS selects the one with the lowest connectivity. This

www.manaraa.com

 Autonomous Learning of Load and Traffic Patterns to Improve Cluster Utilization 227

additional server along with the overloaded server forms a server set of two to service
the “hot” pages/contents [34]. Adaptive clustering has just taken place to meet the
increased demand.

LBLCR scheduling presents two challenges. First, decisions are made based on the
number of connections between the load balancer and each backend server. No other
information is taken into consideration. A connection asking for a page of 1KB plain
text is treated the same as a connection asking for an image of 1 MB that may require
compression and decompression. Second, the threshold for each server is fixed at the
time of server configuration. This is the value used to determine whether another
server should be brought in to the server set. If the threshold is set low, the frequency
of expansion will increase, causing much overhead of decision-making and
expansion. As a result, the overall effectiveness will suffer since the cluster will spend
much time on overhead. If the threshold is set high, the frequency of cluster
expansion will decrease, causing some servers overloaded while others idling.
Threshold is central to adaptation. It must be carefully chosen with much experiments
and efforts. However, finding threshold at the time of setup is not simple. Doing so
requires extensive and lengthy experiments, searching the Web, or even asking
experienced administrators for good values. Suppose that the right threshold is
determined, updating them is another hurdle that has yet to be overcome because it
requires human intervention. It is clear that the threshold be autonomously determined
and updated at runtime to adapt to different traffic patterns with no human
intervention. This is exactly what we shall present in the following section.

3 Autonomous Learning

3.1 Learning Environment Overview

Figure 1 shows the new load balancer with three tables: usage status, pattern matrix,
and learning index. Raw resource usage data are classified into a predetermined
number of regions. The usage status table normalizes raw data to find a load and
traffic pattern. The pattern matrix records load and traffic patterns. The values of each
entry in the matrix uniquely define the nature of each pattern. The learning index table
prescribes how learning should take place. While the details of these three tables will
be presented shortly, in what follows we present a brief overview of the entire
procedure.

Given the three tables, we perform the following procedure to realize our
autonomous learning:

(a) Measure periodically the CPU usage and number of connections for all backend
servers,

(b) Normalize the raw data to find two indices to the pattern matrix,
(c) Identify a pattern in the pattern matrix M using the two indices,
(d) Detect pattern changes and capture them,
(e) Set the thresholds for new patterns and measure the throughputs based on the

learning index,
(f) Pick the threshold with the highest throughput and adjust autonomously.

www.manaraa.com

228 A. Sohn, H. Kwak, and K. Chung

Fig. 1. The overall organization

3.2 Normalizing Load and Traffic Patterns

Load balancer periodically collects raw CPU usage and number of connections from
the backend servers. CPU usage is computed using vmstat idle time while a
connection refers to a client request established between the front-end LVS and a
backend server. These raw values are normalized using standard deviation to find
their relative importance in detecting unusual traffic patterns. Standard deviation
indicates how far a particular CPU usage or a number of connections is away from the
mean. Using the standard deviations for CPU usage and connections, we can quickly
identify how far the current pattern is from the mean, and thus make a decision for the
pattern.

Standard deviation for CPU usage is computed from the CPU utilization samples
of the NS backend servers, where each server can have 0 to 100% utilization. The
maximum standard deviation of 71 is computed based on the samples taken from
two servers as follows: 2 2()

(1)
avgn x x

n n

−
−

∑ ∑ , where n is the number of samples, x is a

sample value, and xavg is the average of n sample values. While standard deviation
should be computed based on n samples drawn from n machines, this definition is
not suitable for our study. The main reason is the number of servers, or server set
size n, changes at runtime for different traffic patterns due to its elastic and adaptive
nature.

Similarly, connections will be normalized based on the connection standard
deviation. Each backend server can establish up to 56,462 connections to the front-
end LVS server. Or, the front-end LVS server can establish up to 56,462 connections
to the backend servers. The maximum standard deviation of 39,925 is computed
based on the samples taken from two servers from an individual machine's
perspective: 2 2 22(0 56462) (28231 28231)

39,925
2(2 1)

+ − + =
−

.

www.manaraa.com

 Autonomous Learning of Load and Traffic Patterns to Improve Cluster Utilization 229

The tables below show an example for CPU usage normalization and connections
through standard deviation. The normalized CPU index is 2 when the CPU usage
standard deviation is 24.

Standard deviation for CPU Usage <= 10 <= 20 <= 30 … <= 71 (max)
Normalized CPU index 0 1 2 … 7

On the other hand, the normalized connection index is 1 when the number of
connections is 7000.

Standard deviation for connection <= 5000 <= 10000 <= 15000 … <= 39925 (max)
Normalized connection index 0 1 2 … 7

The two indices will result in an 8x8 pattern matrix of 64 entries, each of
which represents a pattern of load and traffic. This normalization process
determines the granularity of traffic patterns and in turn sensitivity of learning. If,
for example, the standard deviation for CPU usage is divided into every 5 and
connections into every 2500, there will be 16 indices for CPU and 16 indices for
connection, resulting in a 16x16 pattern matrix of 256 patterns. While they will
help capture the subtle nature of various patterns, more and finer patterns will
also entail higher overhead and be susceptible to noises. We’ll revisit this issue
with experimental results.

3.3 Identifying Load and Traffic Patterns

A pair of normalized CPU and connection indices uniquely defines a pattern of load
and traffic. Using these indices, we construct a pattern matrix M to define all possible
traffic patterns. Table 1 shows an example 8x8 matrix with 64 patterns. Each entry
has three values: CPU weight Wcpu, connection weight Wcon, and threshold H, where
Wcpu = Wcon = 0.0, …, 1.0, Wcpu + Wcon = 1, and H = 0, ..., 10. Each weight indicates its
relative importance with respect to the other weight when making distribution
decisions while threshold controls adaptive activities.

Table 1. Pattern matrix M. Each entry consists of CPU weight Wcpu, connection weight Wcon
and tolerance threshold H, where Wcpu = Wcon = 0.0 … 1.0, Wcpu + Wcon = 1, and H = 0 ... 10.

Normalized connection index Normalized
CPU index 0 1 2 3 … 7

0 … …
1 … … …
2 … …
3 0.4, 0.6, 7
4 0.3, 0.7, 5
…
7 … …

Consider entry (3,2) = (0.4,0.6,7), where the CPU weight is 0.4, the connection
weight 0.6, and the threshold 7. The entry indicates that when traffic pattern (3,2) is
encountered, the number of connections will be more important than the CPU usage
by 20%. The threshold value of 7 indicates that a new server should be recruited if the

www.manaraa.com

230 A. Sohn, H. Kwak, and K. Chung

load of a server set is beyond 7, as explained shortly. The fact that an entry exists
indicates that the particular pattern has been encountered in the past. If an entry does
not exist, no such pattern has emerged yet.

3.4 Expanding/Contracting Server Set Boundary

Adaptation takes place when a set of servers is overloaded. Suppose a client request
is received and the load balancer finds that this request has been served in the past
since there is a set of servers assigned for this request. Since this traffic pattern has
been known, the pattern matrix will have a corresponding entry with Wcpu, Wcon, and
H. The load balancer determines which server among the server set to send the
request to.

Let i be the normalized CPU usage index and j be the normalized connections
index. These two indices uniquely define a traffic pattern in the pattern matrix. Let
Mi,j = (Wcpu, Wcon, H). First, the load balancer computes the tolerance factor F for each
server s in the target server set S = {s0…sk-1} as follows:

, , , 0,..., 1i i cpu cpu i con conF s W s W i k= × + × = −

where si,cpu is the target server CPU usage and si,con is the number of connections
between the target server si and the LVS load balancer, and Wcpu and Wcon, are the
weights specified in Mi,j.

Second, the load balancer selects the target server with the minimum tolerance
factor Fmin among the server set S.

Third, the load balancer compares Fmin with H. If Fmin > H, it is deemed that the
target server set S is overloaded. An expansion of the server set S thus commences.

Expanding a server set entails rechecking, target selection and expansion.
Rechecking ensures if the target server set has indeed been overloaded for a
reasonable period of time. In our case, we use TS seconds. If the overload has indeed
been persistent for over TS seconds, the load balancer computes the load tolerance
factor of all backend servers in the cluster and recruits the one that has the lowest
tolerance factor. It should be noted that the selected server might also be a part of
other server set(s) that are underutilized at the time of recruitment. The client request
will be subsequently sent to the newly recruited backend server. Contracting a server
set is similar to expansion. The load of the server that was just recruited is monitored
for TS seconds. If the load stays below the threshold, the server will be released from
the server set to which this server belongs. The server selected for release might
belong to one to many other server sets, each of which services various client
requests.

3.5 Learning New Patterns

Learning a new pattern takes place when the corresponding entry does not exist in the
pattern matrix M. We have developed two types of learning: incremental and leap.
Incremental learning is designed to take advantage of the known traffic patterns and
their associated weights and thresholds while leap learning is for patterns that are

www.manaraa.com

 Autonomous Learning of Load and Traffic Patterns to Improve Cluster Utilization 231

completely new. The key to this separation, not surprisingly, is the history of the
patterns encountered thus far.

Suppose a request is received. A server will be selected and a pattern matrix
entry will be identified using the normalized CPU usage and connections. Suppose
further that the entry does not exist, which warrants learning, but any of the four
immediate neighbors (up, down, left, and right) exists in the pattern matrix. These
neighbors would provide a possible clue as to how the new traffic should be
handled.

Consider again the pattern matrix shown in Table 1. Suppose that the current
traffic points to the entry M4,2, which does not exist. However, there are two
immediate neighbors, M3,2 = (Wcpu, Wcon, H) = (0.4, 0.6, 7) and M4,4 = (Wcpu, Wcon,
H) = (0.3, 0.7, 5), both of which have already been defined. The tiebreaker for the
two immediate neighbors is lower CPU usage, followed by lower connections
because choosing the entry with higher CPU usage can endanger the existing
processing requirements. For our case, we choose M4,4 = (0.3,0.7,5) as the starting
point.

Given M4,4 = (0.3, 0.7, 5), we measure the throughputs for the following 11
possible combinations of CPU and connection weights for the predetermined learning
period:

(0.8,0.2,5), (0.7,0.3,5), (0.6,0.4,5), (0.5,0.5,5), (0.4,0.6,5),
(0.3,0.7,5),
(0.2,0.8,5), (0.1,0.9,5), (0.0,1.0,5), (1.0,0.0,6), (0.9,0.1,6).

Among the 11 throughputs measured, we pick the combination that gives the
highest throughput. If, for example, the combination (0.2, 0.8, 5) gave the highest
throughput, this would be assigned as the weights and threshold for the entry M4,2.
Incremental learning is now completed.

Leap learning. If an entry and its four immediate neighbors are not defined, it is
clear that this is a completely new pattern. Leap learning will start from scratch.
There are 121 possible pairs to examine since Wcpu= Wcon=0.0, 0.1, …, 0.9, 1.0 and
Leap learning measures the throughputs for all 121 pairs. Among these 121
throughputs is the highest that will be selected for the current pattern. If there are
multiple entries that have the same throughput, the tiebreaker will be the one with
the smallest number of files since it will incur less data transfer time. The
corresponding entry will be subsequently updated with the new values of Wcpu, Wcon,
and H.

Re-learning. Entries are not permanent even if they are defined. While the weights
for a particular traffic pattern should remain the same for consistent performance,
there are other possibilities that require weight changes. For example, machine
specifications might have been changed due to an additional memory card or CPU
upgrade. In this case, it is essential that the weights be re-learned, or re-adjusted for
better and correct performance. This type of relearning is not automatic and can be
performed at the time of machine reconfiguration.

www.manaraa.com

232 A. Sohn, H. Kwak, and K. Chung

4 Experimental Results

4.1 Experiment Environment

To test the proposed approach we have set up an experimental environment. There are
four types of servers: clients, LVS-based front-end server, a cluster of backend
servers, and a web server. The machine specifications are listed in Table 2.

The client machines generate requests based on Webstone [19] and Surge [3].
Various researchers have used these traces to perform their experiment, including [3]
for Surge, [16] for UNC, and [6] for Berkeley. While these traces may not be the best
ones, we attempted to use publicly available traces available on the Web. The requests
based on these traces consist of text files and images, which determine traffic patterns.
The LVS load balancer decides where and how to send requests based on the
scheduling and routing policy. Three policies are used in this study, which are
LBLCR, Round-Robin, and autonomous learning.

Table 2. Specifications of the machines used in the study

Hardware

CPU (MHz) RAM (MB)
Software #

Client/Master P-4 2260 256
Webstone [19]

Surge [3]
10 / 1

LVS P-4 2400 512 Direct Routing 1
Cache Squid [13]

Server
Distiller

P-2 400 256
JPEG-6b

16

Web Server P-4 2260 256 Apache 1

If the requested pages are cached in one of the 16 servers, the selected server will
send them directly to the client without going through the LVS machine, hence direct
routing. The LVS will only handle one-way incoming traffic. If the requested pages
are not cached, the Web server is called to provide the contents. When the fresh
contents are received from the Web server, they are cached (stored) in the selected
target server, which will subsequently send directly to the client. Squid is used to
cache contents received from the Web server.

When caching fresh pages received from the Web server, Round-robin copies them
to every server in the cluster while LBLCR and autonomous learning do not. Our
method and LBLCR keep the data in only one server among the cluster. There is no
copy involved, hence eliminating the cache coherence problem and enabling storage
scalability. Round-Robin is used mainly for comparison purposes since it will provide
the optimal performance at the expense of storage scalability. As all servers have
exactly the same files in RR, no particular distribution strategy is required and there
will be no hotspot for popular pages.

Table 3 lists some important variables used in the experiments. Among the
variables is the number of requests served per second that is used as the main
performance metric for the three methods. Given the machine configuration and
various parameters we present our experimental results in terms of overall learning
behavior, learning new traffic patterns, sensitivity of learning, and learning frequency.
Performance is measured in terms of number of requests serviced per second.

www.manaraa.com

 Autonomous Learning of Load and Traffic Patterns to Improve Cluster Utilization 233

Table 3. Key variables in the experiments

Variables Values
Number of client machines (NC) 10
Number of servers (NS) 1, 2, 4, 8, 16
Distribution policy RR, LBLCR, Self-Learning
LBLCR-Threshold 63, 126, 252
Learning-Time 1, 3, 5, 10 sec
Status table (stdev-con x stdev-CPU) 10 x 5, 10 x 10, 30 x 30, 50 x 50, 100 x 100
Learning Weights
(con-CPU-weight x threshold)

11 x 11 = 121, 6 x 6 = 36

Traffic patterns drawn from Web traces
(Types of client requests)

Image + HTML (19 files, weights)
Surge : Image + HTML (50 or 100 files, weights)
Real web traces : UNC, Berkeley (100 files, weights)

Weight selection criterion bit per second (BPS)
Number of simultaneous connections per
client to a server through LVS

63

Performance indicator Request serviced per second
Active-connection weight (Aweight) 50 (the overhead of processing active connections is fifty

times higher than that of inactive connections on average
[11])

Rechecking time for expanding/contracting
server set boundary (TS)

3 seconds

4.2 Learning Behavior

Figure 2 shows the overall behavior of our approach for different traces. The x-axis
shows time in minutes while the y-axis shows number of requests served per second.
Each experiment was run for at least an hour to identify consistent performance across
different traces.

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

8000

re
q

u
es

ts
 s

er
vi

ce
d

 p
er

 s
ec

o
n

d

requested time (minutes)

 UNC-2003
 UNC-2001
 UNC-2000
 UNC-1999

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

8000

re
qu

es
ts

 s
er

vi
ce

d
p

er
 s

ec
on

d

requested time (minutes)

 Berkeley-1
 Berkeley-2

(a) Using UNC web trace data 1999-2003 (b) Using 1997 Berkeley web traces

Fig. 2. Overall learning behaviors

As we observe from the figure, the total number of requests served is inconsistent
in the beginning. Each run typically starts out with the performance close to the best
but dips in the ensuing minutes. Some runs show significant performance degradation
in the first two to three minutes. It is this time period that traffic pattern(s) are learned
and the weights and thresholds adjusted. After approximately five minutes, the cluster

www.manaraa.com

234 A. Sohn, H. Kwak, and K. Chung

becomes stable, showing consistent performance throughout the remaining period.
The plots based on Berkeley traces in Figure 2(b) show several dips while
consistently maintaining similar overall performance. The reason for these occasional
dips is to learn new patterns. When the same or similar patterns are presented, the
cluster demonstrates essentially the same performance. However, learning new traffic
patterns requires some overhead as indicated in the dips.

4.3 Learning New Patterns

The experimental results below are designed to demonstrate how the system handles
new traffic patterns. Initially, the pattern matrix is empty. Table 4 lists the traces that
clients send. First, traffic patterns 1-5 are used to initiate preliminary learning of
traffic patterns and some of the results are shown in Figure 3. This initial learning fills
five entries.

Table 4. Traffic patterns using the Web traces

Initial traffic patterns New traffic patterns
1 2 3 4 5 6 7 8 9 10 11

Type Image Html Image
+Html

Surge-
50

Surge-
100

UNC-
2003

UNC-
2001

UNC-
2000

UNC-
1999

Berk.-
1

Berk.-
2

req 1000 1000 1000 1000 1000 1000 500 1000 500 1000 500

The second step of the experiment is to send six new traffic patterns 6-11 of the
above table. As seen from Figure 3, the very first traffic pattern causes some initial
fluctuation in throughput. As soon as learning settles and the weights are selected, our
approach shows performance comparable to Round Robin and LBCLR.

It should be noted that the performance of round-robin and LBCLR are the optimal
performance. In Round-Robin each server keeps the same copy of all files. There is
no file distribution. In LBCLR, we selected the optimal weights that we obtained
through our own repeated experiments and searching the Web. In real world
situations, selection of such optimal weights would take days to weeks or even
months with extensive administrator intervention or it may not even be practical.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

re
q

u
es

ts
 s

er
vi

ce
d

 p
er

 s
ec

o
n

d

requested time (minutes)

 RR
 Learning
 LBLCR-63

Fig. 3. Learning new traffic patterns

www.manaraa.com

 Autonomous Learning of Load and Traffic Patterns to Improve Cluster Utilization 235

As the time progresses, similar traffic patterns (patterns 2-5) are efficiently
processed with little overhead. This is apparent from the figure up to 100 minutes.
Each dip of the curve indicates another similar traffic pattern. When new traffic
patterns emerge starting at the 100-minute mark, all three methods show fluctuations.

The last new traffic pattern (Berkeley1997-2) distinguishes the three methods,
where RR performs better than LBCLR by 4 % and learning by 8%. While the
difference is not substantial, the main reason for this minor performance difference
stems from the fact that the front-end load-balancer LVS becomes a bottleneck for a
large number of requests. LVS has reached its capacity of processing approximately
8,000 client requests per second.

4.4 Learning Frequency

Figure 4 shows the impact of learning frequency on performance. The figure
demonstrates that performance is proportional to frequency. Figure 4(b) supports this
proportional behavior. At the frequency of learning in every second, the performance
converges to the maximum in approximately 5 minutes. On the other hand, it takes
approximately 12 minutes to reach the maximum performance when learning takes
place every 3 seconds. It is further evident that the convergence takes approximately
42 minutes when the learning frequency is 10 seconds. However, it is not always
advantageous to learn as often as a second. The cost for this is overhead. First of all,
statistics have to be measured and communicated to the load balancer every second.
Second, the computing overhead associated with learning itself will become visible
for the load balancer as frequency increases. This increase in overhead can be seen in
the figure.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

500

1000

1500

2000

2500

3000

3500

4000

4500

re
qu

es
ts

 s
er

vi
ce

d
 p

er
 s

ec
o

n
d

requested time (minutes)

 1s
 3s
 5s
 10s

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

500

1000

1500

2000

2500

3000

3500

4000

4500

re
q

ue
st

s
se

rv
ic

ed
 p

er
 s

ec
o

nd

requested time (minutes)

 1s
 3s
 5s
 10s

 (a) Surge-100 (b) Image+HTML

Fig. 4. Impact of the frequency of learning on performance

Consider again Figure 4(b). We find that as frequency decreases, unit convergence
rate actually decreases, indicating that learning became effective faster. However,
when learning takes places in every 10 seconds, the unit convergence rate increases
again demonstrating that learning is now less effective. In summary, learning often
does not necessarily give better performance because it incurs additional overhead of
collecting data, analyzing, and making routing decisions. On the other hand, learning

www.manaraa.com

236 A. Sohn, H. Kwak, and K. Chung

in every 10 seconds also is not a good practice either since it tends to ignore new
traffic patterns that require immediate attention. It is therefore essential that learning
frequency be changed at runtime to adapt to different traffic patterns.

5 Performance Comparisons

5.1 Overall Comparison

Comparisons are made against Round-Robin, no learning, and LBLCR with minor
variations. Round Robin is the reference point for our comparisons since it provides
the optimal performance. Figure 5 shows the relative performance of three methods.
Several variations of each method are introduced to highlight the individual methods.
RR is fixed, as there can be no variations. LBLCR has the three variations of 63, 126,
and 252. LBLCR-63 uses the threshold of 63, which we find is the optimal policy
based on our experiments and searching the Web.

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

re
q

u
es

ts
 s

er
vi

ce
d

 p
er

 s
ec

o
n

d

requested time (minutes)

 RR
 Learning
 LBLCR-63
 LBLCR-126
 No-Learning-3
 No-Learning-7

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

re
q

u
es

ts
 s

er
vi

ce
d

 p
er

 s
ec

o
n

d

requested time (minutes)

 RR
 Learning
 LBLCR-63
 LBLCR-252
 No-Learning-3
 No-Learning-7

(a) Surge-100 (b) Image+HTML

Fig. 5. Comparisons of the three methods with variations

Our method has two variations: No-learning-3 and No-learning-7. No-learning-3
refers to no adaptation but the threshold set to 3 out of 10. Low threshold causes more
adaptive activities while high threshold does less often. Various parameters for
learning are listed below: learning frequency 1 second, sensitivity of learning 10x5,
learning range 11x11=121, three pattern matrix entries (0, 0) = (0.8,0.2,0.3), (0,1) =
(0.6,0.4,0.3), (1,0) = (0.9,0.1,0.3), where the three values are connection weight, CPU
weight, and threshold, respectively.

Learning clearly outperforms no learning in both plots. No-learning-3 actually
shows performance comparable to learning. The main reason is that the threshold
is set low so that server sets can be formed more easily and often, resulting in
good performance. However, this frequent formation of server sets comes at the
expense of frequent file copying within a server set. No-learning-7, on the other
hand, shows poor performance, a clear indication that the threshold is set too high
to form server sets.

www.manaraa.com

 Autonomous Learning of Load and Traffic Patterns to Improve Cluster Utilization 237

LBLCR also shows different performance depending on connection weight. While
Figure 5(a) shows approximately a 10% performance difference among the LBLCR
variations, Figure 5(b) shows that the performance difference between LBLCR-63
and LBLCR-252 is large, approximately 50%. This large difference in performance
indicates that weight selection is critical in overall performance since once set the
weights will remain the same until manually changed. However, finding optimal
weights is painstaking and time-consuming. This intervention entails time consuming
steps, including monitoring system performance, determining poor performance,
alerting the administrator, finding good weights that would give better performance
than the current, having the administrator update the weight, etc.

The fact that learning takes several minutes in the beginning can be critical for high
performance applications. One solution to this boundary condition is to spread the
learning over the entire period instead of front-loading. For example, the cluster starts
with LBLCR settings and every several minutes learning would take place. Since
learning is now spread over time, the clients may not notice the difference. This
incremental learning, when implemented properly, will avoid such significant
performance drop that is seen in the first several minutes.

5.2 Scalability

It is critical to study if adding more machines will improve performance. Scalability is
measured in terms of speedup, which is defined as the execution time on P servers
compared to that on 1 server. Figure 6 shows the speedup for two traces, Surge-100
and Image+Html.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

S
p

ee
d

u
p

of Server

 RR
 Learning
 LBLCR-63
 LBLCR-126

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

S
p

ee
d

u
p

of Server

 RR
 Learning
 LBLCR-63
 LBLCR-252

(a) Surge-100 (b) Image+HTML

Fig. 6. Scalability

The figure demonstrates that the scalability of our learning method is essentially
linear indicating that adding more machines will proportionally provide more
performance. As expected, RR shows performance comparable to our method because
every server using RR has the same copy of data.

On the other hand, we note in Figure 6(b) that LBLCR-252 shows a significance
drop in scalability while LBLCR-63 maintains the highest scalability. The key
threshold value chosen for LBLCR-252 at the time of machine configuration was

www.manaraa.com

238 A. Sohn, H. Kwak, and K. Chung

apparently not good. Since this poor performance will become apparent after some
trial and errors, the system administrator will inevitably have to find a better value
such as LBLCR-63 either through various experiments or searching the Web. This is
the fundamental motivation for our study. Our approach removes the system
administrator or human intervention from the loop by autonomously learning the key
parameters and putting them to work with no manual and time-consuming search.

6 Conclusions

We have presented in this report an adaptive clustering framework that autonomously
learns and adapts to different traffic patterns to improve cluster utilization with no
human intervention. Cluster is configured once and for all at the time of initial setup.
Autonomous learning handles the rest. Each traffic pattern is represented in a pair of
normalized CPU usage and number of connections. The normalized values of 0 to n-1
are used to construct an nxn pattern matrix. Each entry of the pattern matrix holds three
values of CPU weight, connection weight, and threshold. The LVS-based load balancer
uses these three values to determine if the target machine is overloaded. When the
target machine is overloaded, a new server is brought in to a server set from the cluster.
When a new pattern emerges which does not exist, it is this set of three values that will
be autonomously learned by using the existing patterns in the pattern matrix.

To test our approach, we have set up an environment consisting of a cluster of 16
servers, an LVS load-balancer, 10 client machines, and a Web server. Client machines
generated requests based on the publicly available Web traces: Berkeley [6], UNC
[16], Surge [3], Webstone [19], etc. Experimental results have demonstrated that the
performance of our learning method is comparable to or even better than that of the
manual LBLCR scheduling. Specifically, we have found that learning too often, or
every second, is counterproductive as the overall performance decreased due to the
increased overhead. On the other hand, learning too many patterns including spurious
ones turned out also counterproductive as the load balancer spent much time
readjusting the weights and thresholds for minor variations. Our approach strikes a
balance in between the high and low learning frequency.

In summary, Round-Robin and LBLCR-based adaptive clustering suffer from
performance scalability and administration. RR has shown little performance
scalability when server specifications changed. LBLCR has also shown a significant
performance drop when suboptimal threshold values were used for varying traffic
patterns. Finding such good threshold values for different traffic patterns requires
time and efforts by the system administrator for LBLCR. On the other hand, our
learning-based adaptive clustering has demonstrated performance scalability
regardless of the changes in traffic patterns and machine configuration while it is all
done autonomously.

References

1. G. M. Amdahl, G. A. Blaauw, F. P. Brooks, Architecture of the IBM System 360, IBM
Journal of Research and Development, Vol. 8, No. 2, April 1964, pp. 87 - 101.

2. Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau, Information and Control in Gray-
Box Systems, 8th ACM Symposium on Operating Systems Principles, 2001, pp. 43-56.

www.manaraa.com

 Autonomous Learning of Load and Traffic Patterns to Improve Cluster Utilization 239

3. P. Barford and M. Crovella, Generating Representative Web Workloads for Network and
Server Performance Evaluation, In Proc. ACM SIGMETRICS Conf., Madison, WI, Jul.
1998.

4. M. Bozyigit, M. Wasiq, User-Level Process Checkpoint and Restore for Migration, Vol.
35, No. 2 (2001) 86 - 96

5. Y. Chang and J. Chen, Designing an enhanced PC cluster system for scalable network
services, 19th International Conference on Advanced Information Networking and
Applications (2005) 163-166

6. M. Christiansen, K. Jeffay, D. Otta and F. Smith, Tuning RED for Web traffic, IEEE/ACM
Transactions on Networking, Vol. 9, No. 3 (2001) 249-264

7. C. Ernemann, V. Hamscher, and R. Vahyapour, Benefits of global grid computing for job
scheduling, 5th IEEE/ACM International Workshop on Grid Computing (2004) 374-379

8. A. G. Ganek and T. A. Corbi, The dawning of the autonomic computing era, IBM System
Journal, Vol. 42, No. 1 (2003) 5 - 18

9. Y. Hong, J. No, and I. Han, Evaluation of fault-tolerant distributed Web systems, 10th
IEEE International Conference on Advanced Information Networking and Applications
(2005) 163-166

10. HP Grid and Utility Computing, http://devresource.hp.com/drc/topics/utility_comp.jsp
11. Job Scheduling Algorithms in Linux Virtual Server, http://www.linuxvirtual-server.org/

docs/scheduling.html.
12. M. Karlsson and M. Covell, Dynamic Black-Box Performance Model Estimation for

Self-Tuning Regulators, 2nd International Conference on Autonomic Computing
(ICAC'05) (2005) 172-182

13. W. Liao and P. Shih, Architecture of proxy partial caching using HTTP for supporting
interactive video and cache consistency, 11th International Conference Computer
Communications and Networks (2002) 216-221

14. Linux Virtual Server Project, http://www.linuxvirtualserver.org/.
15. M. Litzkow, T. Tannenbaum, J. Basney, M. Livny, Checkpoint and Migration of UNIX

Processes in the Condor Distributed Processing System, Technical Report #1346,
University of Wisconsin-Madison Computer Science Department (1997)

16. D. Lu, Y. Qiao, P. Dinda and F. Bustamante, Modeling and Taming Parallel TCP on the
Wide Area Network, Proceedings of 19th IEEE International Parallel and Distributed
Processing Symposium (2005)

17. S. McClure, R. Wheeler, MOSIX: How Linux Clusters Solve Real World Problems, in
Proc. 2000 USENIX Annual Tech. Conf., San Diego, CA. (2000) 49 - 56

18. N1 Grid: Managing n computers as 1, Sun Microsystems, http://wwws.sun.com/
software/solutions/ n1/

19. V. Olaru and W. Tichy, Request distribution-aware caching in cluster-based Web servers,
3rd IEEE International Symposium on Network Computing and Applications (2004)
311-316

20. C. Yang and M. Luo, Building an adaptable, fault tolerant, and highly manageable web
server on clusters of non-dedicated workstations, IEEE International Conference on
Parallel Processing, (2000) 413-420

www.manaraa.com

Parametric Architecture for Function

Calculation Improvement

Maŕıa Teresa Signes Pont, Juan Manuel Garćıa Chamizo,
Higinio Mora Mora, and Gregorio de Miguel Casado

Specialized Processor Architectures Lab (I2RC-DTIC)
University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain

{teresa,juanma,hmora,demiguel}@dtic.ua.es
http://www.dtic.ua.es/spa-lab/index.html

Abstract. This paper presents a new approach to the problem caused
by the exploding needs of computing resources in function calculation.
The proposal argues for increasing the computing power at the primi-
tive processing level in order to reduce the number of computing levels
required to carry out the calculations. This trade-off is developed within
the limits of function evaluation by substituting the usual primitives,
namely sum and multiplication, by a unique weighted primitive that
can be tuned for different values of the weighting parameters. All func-
tion points are carried out by successive iterations of the primitive. A
parametric architecture implements the design. The case of combined
trigonometric functions involved in the calculation of the Hough trans-
form (HT) is analyzed under this scope. It provides memory and hard-
ware resource saving as well as speed improvements, according to the
experiments carried out with the HT.

1 Introduction

Information processing in conventional CPUs is carried out by successive stages
with an increasing computing power as they go away from the initial primi-
tive level implemented by the hardware circuitry. The increasing requirements
of computation-intensive applications lead to a growth of the number of com-
puting levels or to the replication of equivalent computing stages. In both cases,
a scalability problem may appear. CPUs implement primitive operations, such
as sum and multiplication, to perform a sequential execution in the electronic
circuits. This physical basis supports a hierarchical organization of computing
levels characterized by different languages and operations. Therefore, these op-
erations can be expressed in these languages with more or less success, according
to their suitability. A high level language consists of a set of machine language
instructions that involve a great amount of sums and shifts for the digital elec-
tronic circuitry. There are several well-known methods which have succeeded in
improving calculations: pipelining [1] [2] and anticipation [3] [4] can reduce time
delay whereas resource sharing can lower hardware requirements [5].

In this paper, an improvement of the computing capabilities of the primi-
tive processing level is pursued in order to contain the growth of the number of

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 240–253, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.dtic.ua.es/spa-lab/index.html

www.manaraa.com

Parametric Architecture for Function Calculation Improvement 241

derivation levels of the calculations. As a consequence, it can be expected that
modeling, formalization and calculation tasks become easier. The new primi-
tive is a weighted sum of two operands which performs function evaluation by
means of successive iteration. The generic definition of the new primitive can be
achieved by a two dimensional table in which the cells store combinations of the
weighting parameters. This evaluation method suits for a great amount of func-
tions, particularly when the evaluation requires a lot of computing resources. It
also allows implementation schemes which offer a good balance between speed,
area saving and accuracy.

Proposed in 1962, the Hough Transform (HT) has become a widely used tech-
nique in image segmentation: plane curve detection [6], object recognition [7], air
picture vectorization [8], 3D image reconstruction [9], industrial quality inspec-
tion [10], biomedical applications [11] [12], quasar reckoning [13], OCR [14], etc.
The HT is very suitable because of its robustness, although the great amount of
temporary and spatial resources that requires has moved it away from real time
applications. This way, the investigation efforts in HT have dealt with the de-
sign of fast algorithms and parallel or ad-hoc architectures. As the HT consists of
function evaluation using arithmetic operations different algorithmic approaches
have been developed: piece-lineal [15], combinatory [16], binary [17], adaptive
[18] and fast [19]. There are also implementations of the CORDIC algorithm for
applications that demand high speed and precision, such as digital signal and
image processing and algebra [20] [21]. However, their drawback is the lower
degree of regularity and parallelism capabilities when comparing with the tra-
ditional algorithm. The parallelism that underlies in the traditional algorithm
allows the implementation of architectures with shared or distributed memory
(lineal array, mesh, hypercube and binary tree) as well as systolic ones [22].

The paper is structured in six parts. Following the introduction, Section 2 de-
fines the weighted primitive. Section 3 presents the fundamental concepts of the
evaluation method based on the use of the weighted primitive and outlines its com-
puting relevance. A motivational example illustrates the method. In Section 4, an
implementation based on Look-up tables is discussed and an estimation of the
time delay calculation and space occupation is provided. Section 5 is entirely de-
voted to the application of the method to the calculation of the HT. A comparison
with two different hardware approaches together with another one with a software
approach is provided. Finally, Section 6 summarizes results and presents the con-
cluding remarks.

2 Definition of a Weighted Primitive

This section presents the definition of the weighted primitive and outlines its
computational relevance.

The weighted primitive is an operation ⊗ defined in the following way:

⊗ : R × R −→ R

(a, b) −→ a ⊗ b = αa + βb
(α, β) ∈ R

2
(1)

www.manaraa.com

242 M.T. Signes Pont et al.

The operation ⊗ can also be defined by means of a two-input table.
Figure 1 defines the operation for the particular case of integer values, in bi-
nary sign-magnitude representation (the sign is the more left bit, 0 for positive
values, 1 for negative values) and for k = 1 (k stands for the number of signif-
icant bits in the representation, in bold characters). The arguments have been
represented in binary and decimal notation and the results are referred in a
generic way, as combinations of the parameters α and β.

Fig. 1. Definition of the operation for k = 1

The same operation can be represented for greater values of k (see Figure 2
for k = 2). Central cells are equivalent to those of Figure 1. The number of cells
in a table is (2(k + 1) − 1)2 and it only depends on k. The cells are organized
as concentric rings centered in 0. It can be noticed that increasing the value
of k causes a table growth arranged in peripheral rings. The number of rings
increases at a rate of 2k when k increases one unit. The smallest table is defined
for k = 1 but the same information about the operation ⊗ is provided for any
value of k.

Fig. 2. Definition of the operation ⊗ for k = 2

The operation ⊗ is performed when the arguments (a, b) address the table
and the result is picked up from the corresponding cell. The first argument
(a) addresses the row whereas the second (b) addresses the column. When the
precision of the arguments n is greater than k, these must be fragmented in
k−sized fragments in order to perform the operation. Therefore, t double accesses
are necessary to complete the t cycles of a single operation (remember n = k · t).
A single operation requires picking up from the table so many partial results
as fragments are contained in the argument. The overall result is obtained by
adding t partial results, according to their position.

www.manaraa.com

Parametric Architecture for Function Calculation Improvement 243

3 Function Evaluation Method Based on a Weighted
Primitive

Usually, under the scope of the extended machine model with primitives such
as sum and multiplication, function evaluation is provided by higher and higher
levels in the machine according to the increasing computational complexity of
the function which is going to be calculated. Nevertheless, we can easily imagine
the same calculation performed at a lower computing level by other primitives,
whenever the new primitives intrinsically assume part of the complexity. This
approach is considered in this paper as far as it may be the way to perform the
calculation of functions with both algorithmic and architectural benefits, as well
as time delay and area costs saving.

Our inquiry for a primitive operation that bears more computing power than
the usual primitives sum and multiplication points towards the operation ⊗. As
shown in Section 2, this new primitive is more generic (sum and multiplication
are particular cases of it) and, as it will be shown, the recursive development of
the operation ⊗ offers quite different features which turn to be much more mean-
ingful than the formal combination of both operations. This issue has crucial
consequences because function evaluation is performed with no more difficulty
than iteratively applying a simple operation defined by a two-input table.

In order to implement the evaluation of a given function Ψ we propose to
approximate it by a function F defined as follows:

F0,
Fi+1 = Fi ⊗ Gi,
i ∈ N; ∀i, (Fi, Gi) ∈ R

2
(2)

The first value of the function is given (F0) and the next values are calculated
by iterative application of the recursive equation. The approximation capabilities
of function F can be understood as the equivalence of the respective sets of real
values {Ψ(i)} and {Fi}. The definition of the mapping between the two sets
causes function Ψ to be quantized with a quantization step h. The independent
variable is denoted x + ih, where x is the initial real value and i ∈ N can take
successive increasing values. The mapping implies three initial conditions to be
fulfilled. They are:

1. x (initial Ψ value) is mapped to 0 (index of F), that is to say Ψ(x) ≡ F0.
2. Any quantization step h will be referred as the unity in the weighted primi-

tive formulation (h ≡ 1).
3. The previous assumptions allow not having to discern between i (index be-

longing to the independent variable) and i (iteration number), that is to say:
Ψ(x + ih) = Ψ(0 + i1) = Ψ(i) ≡ Fi.

So, the mapping of the function Ψ by the recursive function F succeeds in the
approximation by means of the normalization process defined in 1), 2) and 3).
It can be noticed that the function F is not unique because different mappings
can be done.

www.manaraa.com

244 M.T. Signes Pont et al.

As an example of the approximation capabilities of the method, the calculation
scheme for an exponential function is illustrated in Figure 3.

Ψ(t) = 1 − e−0.9t

Approximation: F0 = 1; α = 0.42; β = 0.582; ∀i, Gi = 1.
Fi+1 = 0, 42Fi + 0, 582,
with Ψ(0) ≡ F0 = 0 and h = Δt ≡ Δi = 1.

Fig. 3. Approximation of Ψ(t) (bars) by recursive function F (dots). error of 0.33%.

Any calculation of {Fi} is performed with computational complexity O(N)
whenever {Gi} is known or carried out with the same (or less) complexity. It
can be outlined that the interest of mapping the function F is limited to the
fulfillment of this condition. This fact outlines at least two different computing
issues. The first develops new function evaluation upon the previous, that is to
say, when the function F has been calculated, it can play the role of G in order
to generate a new F function. This spreading scheme provides a lot of increasing
computing power with linear cost. The second scheme deals with the crossed
calculation of the functions F and G, that is to say G is the auxiliary function
involved in the calculation of F as well as F is the auxiliary function for the
calculation of G. In addition to the linear cost, the crossed calculation scheme
provides time delay saving as both functions are calculated simultaneously.

4 Architecture

As mentioned in Section 3, the two main computing issues lead to different ar-
chitectural counterparts. The development of a new function evaluation upon
the previous one in a spreading calculation scheme is carried out by the pro-
cessor presented in Figure 4. The second scheme deals with the crossed paired
calculation of the functions F and G, that is to say G is the auxiliary function
involved in the calculation of F as well as F is the auxiliary function for the
calculation of G (see Figure 5).

The proposed implementation uses a Look-up table (LUT) that contains all
partial products αAk + βBk. These Ak, Bk are few bits chunks of the current
input data Fi and Gi. On every cycle the LUT is accessed by the Ak and Bk

coming from the shift registers. Then the partial products are taken out of the

www.manaraa.com

Parametric Architecture for Function Calculation Improvement 245

Fig. 4. Arithmetic processor for the spreading calculation scheme

Fig. 5. Arithmetic processor for crossed paired evaluation

cells (partial products in the LUT are the hardware counterpart of the weighted
primitives presented in Figures 1 and 2). The overall partial product αFi +
βGi is obtained by adding all the shifted partial products corresponding to all
fragment inputs Ak, Bk of Fi and Gi, respectively. At the following iteration the
new calculated Fi+1 value and the next Gi+1 value are multiplexed and shift
registered before they access the LUT, in order to repeat the addressing process.
The processor shown in Figure 4 is different from the one of Figure 5 in what
concerns to the function G. The values of G are obtained in the same way as for
F but the LUT for G is different from the LUT for F .

In order to perform a comparison of computing resources, an estimation of
the area cost and time delay of the proposed architectures is presented here.
The model used for the estimations is taken from [23], [24] and [25]. The unit
τa represents the area of a complex gate. The complex gate is defined as the
pair (AND, XOR) which provides a meaningful unit for implementing the most
basic computing device: the one bit full-adder. The unit τt is the delay of this
complex gate. This model is very useful because it provides a direct way to
compare different architectures, irrespectively from their implementation. As an
example, the area cost and time delay for 16 bits and one-bit fragmented data
are estimated for both processors (Table 1).

If the fragments of the input data are greater than one bit the occupied area
and the time delay of access of the LUT vary. The relationship between area,
time delay and fragment length k, for 16 bits data is shown in Table 2 for the
processor of Figure 5.

Table 2 outlines the fact that the LUT area increases exponentially at a rate
of k, and represents an increasing portion of the overall area as k increases.

www.manaraa.com

246 M.T. Signes Pont et al.

Table 1. Arithmetic processor estimations of area cost and time delay for 16 bits
one-bit fragmented data

Hardware devices Occupied area Time delay

Multiplexer 0, 25 · 2 · 16τa = 8τa 0, 5τt

Shift Register 0, 5 · 16τa = 8τa 15τt · 0, 5τt = 7, 5τt

LUT 40 τa
Kbit

· 16 bits · 16 cells = 10τa 3, 5τt · 16 acc. = 56τt

Register 0, 5 · 16τa = 8τa 1τt

Reduction structure
4 : 2 + adder

4τa + 16τa = 20τa 3 red·3τt + log 16τt = 13τt

Arith. processor Fig. 4 70τa 78τt

Arith. processor Fig. 5 108τa 78τt

Table 2. Relationship between area, time delay and fragment length k, for 16 bits
data for the processor shown in Figure 5

k = 1 k = 2 k = 4 k = 8 k = 16

LUT area 20τa 80τa ≈ 2Kτa ≈ 500Kτa > 1Gτa

LUT area vs
overall area

20τa
108τa

= 0, 18 80τa
168τa

= 0, 47 2048τa
2136τa

= 0, 96 > 0, 99 > 0, 99

LUT acc. time 56τt 28τt 14τt 7τt 3τt

LUT acc. time vs
overall proc. time

56τt
78τt

= 0, 72 28τt
50τt

= 0, 56 14τt
36τt

= 0, 39 7τt
29τt

= 0, 24 3τt
25τt

= 0, 12

The access time for the LUT decreases linearly at a rate of 1/k. The percentage
of access time versus overall processing time decreases slowly at a rate of 1/k.
The trade-off between area and time has to be defined according to the final
application. The proposed architecture has also been tested in the XS4010XL-
PC84 FPGA. Time delay estimation in usual time units can also be provided
assuming τt = 1ns.

A complete study of the error is still under development and numerical results
are not available yet. Nevertheless, some important traits can be outlined. The
recursive calculation accumulates absolute error as the number of iterations in-
creases. This drawback can be faced by both decreasing the number of iterations
and considering techniques for error compensation. A trade-off must be found
between the accuracy of the evaluation (related to the number of calculated
values) and the increasing calculation error. Parallelization provides a mean to
deal with this problem by defining computing levels. Between two consecutive
values, FiFi+1 obtained at a computing level p a new calculation can take place
at level p + 1 to carry out a set of new values by different parameters α, β and
G. The improving process can extend on more levels. It can be outlined that the
processors involved in these calculations configure a tree-structured architecture.
Figure 6 shows an example of a four-level structure organization.

In a more generic way, when the calculation of N values for function F is
pursued, the organization of the calculation can be set as follows, assuming that

www.manaraa.com

Parametric Architecture for Function Calculation Improvement 247

Fig. 6. Four level processing tree-structure

N = N1 ·N2 · . . . ·Np, where Ni stands for the number of values to be calculated
at a given level i. If the error for the calculation of one value is assumed to be ε,
the maximum error affects the values at the last level and is (N1+N2+...+Np)ε.
It can be minimized when the sum (N1 + N2 + ... + Np) is minimized, that is to
say when all Ni in the sum are prime numbers. The sequential calculation would
imply a greater error Nε. The time delay calculation follows a similar evolution
scheme as the error. Assuming T is the time delay for one value calculation,
the overall time delay is (N1 + N2 + ... + Np)T . The minimization condition is
the same as for the error, so the sequential calculation would imply a greater
time delay NT . For the occupied area, the precise structure of the tree in what
concerns the depth (number of computing levels) and the number of branches
(number of calculated values per processor) is quite relevant to the result. That
is to say the distribution of Ni defines some improving tendencies. The number
of processors P in the tree-structure can be bounded as shown in 3:

P = 1 + N1 + N1N2 + N1N2N3 + . . . + N1N2N3 . . .Np < 1 + (p − 1)
N

Np
. (3)

P increases as the number of computing levels p increase but the growth can
be contained if Np is the maximum value of all the Ni, that is to say, in the
last computing level p − 1 the number of values calculated per processor is the
highest. Summarizing the main ideas:

– The parallel calculation has benefits on error calculation and time delay
whereas sequential calculation improves in area saving.

– A trade-off must be established between the time delay, occupied area and
the approximation accuracy (considering the number of calculated values).

5 Calculation of the Hough Transform

The geometric primitive detection using the HT implies three stages: image
outline creation by using an edge detector, application of the HT to each point
of the image and a voting process in the Hough domain in order to extract the
geometric primitives. If the geometric primitive to be detected is a straight line,
the HT transforms each point P (x, y) in the Cartesian domain in a point (ρ, θ)
in the Hough domain, and vice versa. So, the Hough domain is complete and
unique for 0 ≤ ρ < Π line representation. The Hough domain can be interpreted

www.manaraa.com

248 M.T. Signes Pont et al.

as a voting grid. Each point in the Cartesian domain votes for a set of lines
that intersect it and that stand for a grid point (ρ, θ). A local maximum point
in the voting grid represents the best adjusted line detected. The grid point’s
increments Δρ and Δθ establish both distance and angular difference between
lines in the Cartesian domain, respectively. The HT is a robust technique since
the voting process is not affected by isolated noise points because wrong votes do
not affect the local maximum. The HT also manages successfully line occlusion
problems, because the distance between points is not relevant. The parametric
space is quantized in Nθ levels, from 0 to Π and Nρ levels, from ρmin to ρmax.
The HT calculates the ρ values for all the angles in [0, Π [and for every pixel in
the image. The direct calculation has a complexity O(N2) and the global amount
of operations is N2 · Nθ. If [0, Π [is considered as [0, Π/2[U [Π/2, Π [, the HT for
every pixel (xi, yj) in the image can be written as:

(ρI)i = xi · cos θi + yj · sin θi, 0 ≤ θi < Π
2 .

(ρII)i = yj · cos θi − xi · sin θi,
Π
2 ≤ θi < Π.

(4)

If:
θk = θk−1 + Δθ,
cos θk = cos (θk−1 + Δθ) ,
sin θk = sin (θk−1 + Δθ) ,
cosΔθ = α, sin Δθ = β.

(5)

When substituting 5 in 4 we have that:

(ρI)i = α (ρI)i−1 + β (ρII)i−1 ,
(ρII)i = α (ρII)i−1 + β (ρI)i−1 ,
with α2 + β2 = 1.

(6)

It appears that (ρI)i and (ρII)i can be cross-evaluated by applying twice the
Equation 2, using Gq = (ρI)i when evaluating Fq = (ρII)i and using Gq = (ρII)i

when evaluating Fq = (ρI)i · (ρI)0 and (ρII)0 should be initialized with the value
of the coordinates of each pixel in the image.

Two fast HT architectures based on CORDIC are considered for comparison
with our method: a pipelined reconfigurable implementation [26] and a parallel
one [27]. Area and delay are compared but error is only treated for the first one.
In addition, a comparison with a software implementation [26] is provided.

5.1 Comparison with Pipelined CORDIC

In the first proposal [26], a HT using 16-bit fixed-point arithmetic, 12-iteration
CORDIC is implemented using a Xilinx XS4010XL-PC84 FPGA for fast proto-
typing. The HT using pipelined CORDIC with serial scale factor compensation
uses 83% or 333 CLBs out of 400 of the XS4010XL FPGA. This implementation
can be clocked at more than 40MHz with a computational complexity of O(N2)
for a NxN image. At this frequency, a 128x128 binary image with 128 discrete
angles (Δθ = 1.40625o) takes 0.0262 seconds to transform one image.

www.manaraa.com

Parametric Architecture for Function Calculation Improvement 249

In the pipelined CORDIC implementation, the global error (E=2N2−(n−1/2)+
2−M · n) falls with the number of bits of the fractional part M and grows with
the number of iterations n, when n > 16.

According to the evaluation model presented by [23] [24] [25] and to the char-
acteristics of the Xilinx XC4000 FPGA devices (a CLB consists of one LUT-
3, two LUT-4 and 2 latches), Table 3 shows the area estimation for pipelined
CORDIC, data precision is 16 bits and reduction structure chosen is 3 : 2.

Table 3. Area estimation for the pipelined CORDIC

Pipelined CORDIC Num CLBs=333 Complex gates

LUT-3 1 · 333 = 333 333 · 23 · 24 · 40 τa
Kbit

= 1665τa

LUT-4 2 · 333 = 666 2 · 333 · 24 · 24 · 40 τa
Kbit

= 6660τa

Latches 2 · 333 = 666 2 · 333 · 0.5 · 24 · τa = 5328τa

Overall 13653τa

With respect to the area, the comparison between our method and the
pipelined CORDIC has been achieved by observing Tables 1, 2 and 3. As shown
in Table 4, it appears that our method occupies an increasing area with k, but
our implementations are better than the CORDIC ones up to k = 8. For delay
estimation, the HT calculation involves 64 · 128 · 128 iterations and each itera-
tion has 16/k cycles. We assume that τt ≈ 1ns in the XS4010XL-PC84 FPGA.
Table 4 shows that only for k = 16 our method can provide equal time delay
than the pipelined CORDIC, which takes 0.0262s to perform the calculation.
Unfortunately, the occupied area would not be acceptable.

Table 4. Delay and area estimates for our proposal for the sequential implementation

Fragment size Time delay (ms) Area (τa)

k=1 128 · 128 · 12 · (22 + 56) τt = 15.33 9 · 2 · (44 + 10) τa = 972

k=2 128 · 128 · 12 · (22 + 28) τt = 9.83 9 · 2 · (44 + 40) τa = 1512

k=4 128 · 128 · 12 · (22 + 14) τt = 7.08 9 · 2 · (44 + 1024) τa = 19224

k=8 128 · 128 · 12 · (22 + 7) τt = 5.70 9 · 2 · (44 + 262444) τa = 4724784

k=16 64 · 128 · 128 · (22 + 3) τt = 4.91 9 · 2 · (44 + 17179869184) τa > 1G

It can be shown that our method has a better performance in what concerns
to time delay and occupation area. With respect to the error, the pipelined
CORDIC increases its error when the number of calculated values increases.
Our implementation has a bounded value for the tree-structured architecture.
If ε is the error obtained after one iteration, then the maximum error of this
structure has an upper bound of 12ε.

5.2 Comparison with a Parallel CORDIC

The second proposal [27] is a parallel implementation of the CORDIC algorithm
in order to calculate the HT. The computation of the HT for a NxN image with

www.manaraa.com

250 M.T. Signes Pont et al.

a single CORDIC processor requires N3/2 cycles, assuming that in eacheval-
uation two values for parameter ρ are obtained. The computation time can be
reduced by introducing parallelism. Three possible approaches exist, namely par-
allelization for the pixels in the image, for the angle θ or both simultaneously.
The latter requires N3/2 CORDIC processors, that is, one processor per pixel
per angle. The evaluation of the transform takes only the time of one CORDIC
operation: n cycles for radix 2, n/2 + n/4 cycles for mixed radix 2 − 4 and n/2
for radix 4 (n is the data precision), but the hardware is considerably increased.
Also, some conflicts occur in the voting process because the results obtained
by the processors for the same angle θ can vote over the same element in the
Hough space at the same time. The introduction of parallelism only for the pixel
calculation requires N2 processors, one for each pixel. The number of CORDIC
operations is N/2 plus a latency, which depend on radix. There are also con-
flicts in the voting process. A solution which does not produce voting conflicts is
the parallelization of the angles. In this case a processor per angle is needed, in
which all the pixels of the image are processed sequentially. The total number of
processors is N/2 and the number of cycles for the evaluation of the transform
is N2 plus a latency and one pixel is processed in each cycle.

The implementation considered in [27] uses a 12-bit-precision CORDIC pro-
cessor with 10 stages (6 are the standard iteration-stages, 1 for the compensation
of the scaling factor and 3 for performing the scaling). Each stage consists of
two registers, two multiplexes and two adders/subtracters. The standard stage
needs 24 bits for each angle in the ROM. The time delay is 0, 819ms.

For transforming a 128x128 image with 128 rotation angles, in the angle
parallelization case, 64 processors are needed and 128 ·128 cycles are performed.
The area of the n−bit register can be estimated as 0.5 · nτa. The area of the
multiplexors depends on the number of input vectors v and on their size n. The
associated area is about 0.25 · v · nτa. The area estimates are shown in Table 5.

In order to speed up the time delay and contain the error, our method can
parallelize the execution with a similar tree-structured architecture as for the
pipelined CORDIC. N = 128x128 are the initial pixel values and 64 new values
need to be calculated per each pixel value. In order to approximate the parallel
CORDIC performance (0.819 ms and 31580τa), the following implementations
can suit:

– k = 1, 16 identical tree-structures performing 210 calculations each one. So,
time delay will be 0.9581ms and area 15552τa.

Table 5. Area estimation for the parallel CORDIC implementation

Parallel CORDIC Quantity Complex gates

Registers 20 · 64 20 · 64 · 0.5 · 12τa = 7880τa

Multiplexers 20 · 64 20 · 64 · 0.5 · 12τa = 7880τa

Adders/Subtracters 20 · 64 20 · 64 · 12τa = 15760τa

LUT tables 64 · 24 bits 64 · 24 · 40 τa
Kbit

= 60τa

Overall 31850τa

www.manaraa.com

Parametric Architecture for Function Calculation Improvement 251

– k = 1, 32 identical tree-structures performing 29 calculations each one. So,
time delay will be 0.4790ms and area 31104τa.

– k = 2, 16 identical tree-structures performing 210 calculations each one. So,
time delay will be 0.6144ms and area 24192τa.

If ε is the error, the maximum error caused by this structure is 12ε after one
iteration. The referred work [27] does not provide data on the error performed
by the implementation presented. It can be noticed that the presented imple-
mentation achieves a satisfying trade-off between area, time delay and error.

5.3 Comparison with a Software Implementation

Reference [26] provides a comparison with a software implementation. A typical
software program that performs the HT was written for comparing the per-
formance of a microprocessor and that of a FPGA implementation. The pro-
gram performs 128 ρ−value calculations using sine and cosine functions for
128x128 = 16384 pixels. The following code shows the calculation:

register int i,j;
register double k;
start = clock();
register double result = 0;
for (i=0; i<128;i++){

for (j=0;j<128;j++){
for (k=0; k<PI; k+=PI/128 { }

}
}
finish=clock();

This program was built and run in Debug mode with Microsoft Visual C++
6.0 on a PIII 667 MHz with 133 MHz FSB and 512 KB cache, Windows 2000
PC. The results show it can process 16384 pixels in 0.921s. This is about 35
times slower than the throughput of a comparable pipelined CORDIC HT and
11 times slower than our proposal (see Table 3 for k = 1). The performance
advantages made available by an FPGA’s ability for custom computation are
clear from this comparison.

6 Conclusion

This paper has presented an architectural approach to the scalability problem
caused by the exploding requirements of computing resources in function cal-
culation approaches. Fundamentals of the method claim that the use of a more
complete primitive, namely a weighted sum, converts the calculation of the func-
tion values into a recursive operation defined by a table. The strength of the
method is concerned with the fact that the operation to be performed is the
same for the evaluation of different functions (elementary or not). Therefore,

www.manaraa.com

252 M.T. Signes Pont et al.

only the table must be changed because it holds the features of the concrete
evaluated function in the parameter values. The method provides a linear com-
putational cost when some conditions are fulfilled. The comparison with other
methods outlines the advantages of this approach, at least for calculations that
involve a lot of elementary operations, as is the case of combined trigonometric
functions. The sequential and parallel architectures allow achieving a satisfying
trade-off between time delay and occupied area as well as encouraging partial
results in what concerns to error contention.

References

1. Schwarz, E.M.: Rounding for Quadratically Converging Algorithm for Division and
Square Root. Proc. ASILOMAR’96, (1996) 600–603

2. Beaumont-Smith, A.; Burgess, N. and Lefrere, S.: Reduced Latency IEEE Floating-
point Standard Adder Architectures. Proc. ARITH’99, (1999) 35–43

3. Schmookler, M.S. and Nowka, K.J.: Leading zero anticipation and detection-a com-
parison of methods. Proc. ARITH’01, (2001) 7–12

4. Lang, T. and Bruguera, J.D.: Floating-Point Multiply-Add-Fused with Reduced
Latency. IEEE Trans. on Computers, Vol. 53, No. 8, (2004) 988–1003

5. Tan, D; Danysh, A and Liebelt, M.: Multiple-precision fixed-point vector multiply-
accumulator using shared segmentation. Proc. ARITH’03, 2003 12–19

6. Muamar, H.K and Nixon, M.: Tristage HT for multiple ellipse extraction. IEEE
Proc. Part E: Computer and Digital Techniques, Vol. 138, No. 1, (1991) 27–35

7. Haule, D.D and Malowany, A.S.: Object Recognition using fast adaptive HT. Proc
PACRIM’89, (1989) 91–94

8. Silva, I.: Vectorization from aerial photographs applying the HT method. Proc.
SPIE, Vol. 1395, No. 2, (1990) 956–963

9. Yamazawa, K.; Yagi, Y. and Yachida, M.: 3d Line Segment Reconstruction by Using
Hyperomni Vision and Omnidirectional Hough Transforming. Proc. ICPR’00, Vol.
3, (2000) 487–490

10. Bariani, M.; Cucchiara, R.; Mello, P. and Piccardi, M.: Exploiting symbolic learning
in visual inspection. LNCS, Vol. 1280, (1997) 223–234

11. Dong, F.; Clapworthy, G.J. and Krokos, M.: Volume Rendering of Fine Details
Within Medical Data. Proc. VIS’01, (2001) 387–394

12. Tezmol, A.; Sari-Sarraf, H.; Mitra, S. and Gururajan A.: Customized HT for Robust
Segmentation of Cervical Vertebrae from X-Ray Images. Proc. SSIAI’02, (2002)
224–228

13. Huang, L.Y.; Hu, Z. and Sun, F.M.: A New Automatic Quasar Recognition Tech-
nique Based on PCA and the HT. Proc. ICPR’00, (2000) 2499–2502

14. Sural S. and Das, P.K.: A genetic algorithm for feature selection in a neuro-fuzzy
OCR system. Proc. ICEDAR’6, (2001) 987–991

15. Koshimizu, H. and Numada, M.: On fast HT method PLHT based on piecewise-
linear Hough function. J. System Computer in Japan, Vol. 21. No. 5, (1990) 62–73

16. Ben-Tzvi, D. and Sandler, M.: A Combinatorial HT. J.P. Recognition Letters, Vol.
11, (1990) 167–174,

17. da Fontura, L. and Sandler, M.B.: A binary HT and its efficient implementation
in a systolic array architecture. J.P. Recognition Letters, Vol. 10, (1989) 329–334

18. Walther, J.S.: A unified algorithm for elementary functions. Proc. Spring Joint
Computers Conf., (1971) 379–385

www.manaraa.com

Parametric Architecture for Function Calculation Improvement 253

19. Li, H.F.; Lavin, M.A. and Le Master, R.J.: Fast HT: a hierarchical approach. J.
Computer Vision Graphics Image Processing, Vol. 36, (1986) 139–161

20. Hu, Y.H.: CORDIC-based VLSI architectures for Digital Signal Processing. IEEE
Signal Processing Magazine, Vol. 7, (1992) 16–35

21. Shankar, R.V. and N. Asokan.: A parallel implementation of the HT method to
detect lines and curves in pictures. Proc. MWSCAS’32, (1990) 321–324

22. Chuang , H.Y.H. and Li, C.C. A systolic processor for straight line detection by
modified HT. IEEE Conf. on Computer Architecture for Pattern Analysis and
Image Database Management, (1995) 300–304

23. Ercegovac, M. and Lang, T.: Division and Square root: Digit-Recurrence, Algo-
rithms and Implementations. Klüwer Academic Pub., (1994)

24. Piñeiro, J-A.; Bruguera, J.D. and Muller. J.M.: Faithful powering computation
using table look-up and a fused accumulation tree. Proc. ARITH’01, (2001) 40–47

25. Piñeiro, J-A.; Ercegovac, M.; Bruguera, J.D.: High-Radix Logarithm with selection
Rounding. Proc. ASAP’02, (2002) 101–110

26. Deng Dixon, D.S and El Gindy H.: High speed Parametrizable HT using reconfig-
urable hardware. Proc. ACM VIP, 2001 51–57

27. Bruguera, J.D. and Guil, N.: CORDIC-based parallel/pipelined architecture for
the HT. J. of VLSI Signal Processing, Vol. 12, No. 3, (1996) 207–221

www.manaraa.com

Design Space Exploration of Media Processors:

A Generic VLIW Architecture and a
Parameterized Scheduler

Guillermo Payá-Vayá, Javier Mart́ın-Langerwerf,
Piriya Taptimthong, and Peter Pirsch

Institute of Microelectronic Systems
University of Hannover

Appelstr.4, 30167 Hannover Germany
{guipava,jamarlan,pirsch}@ims.uni-hannover.de

Abstract. This paper presents a new environment for exploring and
optimizing VLIW architectures for multimedia applications. The envi-
ronment consists of a generic VLIW architecture, in which virtually all
characteristics can be changed, and an assembler with the corresponding
parameterized scheduler based on an enhanced version of the list schedul-
ing algorithm. A novel partitioned register file architecture is proposed
and analyzed with this environment. This is performed using a highly
time consuming task of the H.264 video decoder application. Perfor-
mance improvements of up to 67% can be achieved when running this
application on different architecture configurations.

1 Introduction

Nowadays, continuous improvements in algorithm research require increasingly
sophisticated multimedia operations, demanding a rising amount of processing
power. Current media processors cannot meet the tremendous demand on mul-
timedia hardware without an adaptation to special processing characteristics.
Current video applications, e.g. MPEG-4 or H.264, are pushing the limits of
existing media processors for high definition quality.

Due to the capability of exploiting the high degree of inherent parallelism
in multimedia applications, VLIW architecture approaches have received great
interest in the last ten years [1]. VLIW architectures execute multiple operations
within a single long instruction word. Therefore, multiple parallel functional
units have to be implemented in order to allow this concurrency. In general,
the performance of a VLIW architecture can be further improved by subword
parallelism [2,3], instruction set extensions [4], specialized functional units and
instruction level parallelism [5]. In contrast to other advanced processors, VLIW
architectures require instruction scheduling to be performed at compile time to
assemble the long instruction words.

Multiple architectural options should be taken into account before design-
ing a media processor. For example, increasing the amount of instruction level

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 254–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Design Space Exploration of Media Processors 255

parallelism (ILP) requires more registers to hold the operands and results of
those instructions. This leads to a complex register file with a high number of
read/write ports to allow the concurrent access. On the other hand, large multi-
port memories introduce performance degradation [6]. Therefore, partitioned
register files should be considered for this kind of processor architectures.

Existing design space exploration techniques comprise, e.g., software-based
performance estimation [7]. Therewith, fast results can be obtained, but they
do not have the possibility to perform architecture-specific code optimizations.
Other techniques obtain more precise results by actually simulating different
applications on a parameterized VLIW cluster-based architecture [8].

In order to explore and optimize a VLIW architecture for a specific group
of applications, a generic VLIW architecture is desirable, in which virtually all
characteristics can be changed. This paper presents a design space exploration
environment that comprises a parameterized VLIW pipeline architecture sim-
ulator, together with an aggressive code scheduler based on the list scheduling
algorithm [9]. For this, a scheduler that considers all these characteristics is
mandatory. Using this environment and the motion compensated prediction al-
gorithm specified on the H.264 video coding standard [10] as a reference applica-
tion, the performance of a generic VLIW architecture for different configurations
has been studied.

This paper is organized as follows. Section 2 presents the generic VLIW archi-
tecture. Section 3 introduces some basic concepts of code scheduling, and gives
details of a parameterized code scheduler. After that, in Section 4, the results
of a H.264 decoding task run on different architecture configurations are shown.
Finally, conclusions are presented in Section 5.

2 A Generic VLIW Architecture

In this section, we present a generic VLIW architecture that covers the basic
requirements for media processing. This architecture is based on the experience
obtained on previous works [11]. Two important characteristics have been consid-
ered. A fully parameterized architecture is defined, which is easily extendable by
adding or modifying functional units. Additionally, a novel register file structure
avoids a high number of required ports when the number of parallel operations
increases.

For this generic VLIW architecture, a parameterized simulator was written in
OpenVera [12] and standard C. This reference model is used, not only to build a
stand-alone simulator, but also to perform an IP verification of the generic VLIW
architecture hardware description. The use of OpenVera allows easy testbench
creation and structured RTL interfacing [13]. Figure 1 shows an overview of the
design space exploration environment.

2.1 Vector Unit Structure

The basic structure of this VLIW architecture, hereafter called Vector Unit
(VU) (see Figure 2), has been specially designed for efficient processing of blocks

www.manaraa.com

256 G. Payá-Vayá et al.

ARCHITECTURE DESCRIPTION
Parameters

ASSEMBLER
PIPELINE

SIMULATOR

APPLICATION

Assembler code

Dynamic and
static

performance
metrics

Binary
code

Fig. 1. Design Space Exploration Environment

Instruction Memory

Two Instr. Decoder

Vector Register File

Issue 0 Issue 1

ALU
Special

FU
Special

FU
MUL /
 MAC

Data Memory

VECTOR
UNIT

DMA
Interface 0

Intercore
Memory

Fig. 2. Vector unit architecture

of data or macroblocks normally used in video coding algorithms. The VU com-
prises a flexible datapath controlled by a 64-bit dual-issue VLIW (two 32-bit
operations). Moreover, the datapath implements subword parallelism (e.g. for a
64-bit datapath, operands are splitable into one 64-bit subword, two 32-bit sub-
words, four 16-bit subwords or eight 8-bit subwords) in almost every functional
unit.

The control path is divided initially into 5 different basic stages: Instruction
Fetch (IF), Instruction Decode (DE), Register Access (RA), Execution (EX)
and Write back (WB). The EX stage, as shown in Figure 3, can be subdivided
into more stages depending on the characteristics, e.g. latency, of the functional
units.

The VU implements a configurable global address map, which allocates a 64-
bit dual port instruction memory with configurable size. There is also a dual port
data memory with configurable size. Each memory is accessed by the processor
itself and by a DMA unit, which performs data transfers in background between

www.manaraa.com

Design Space Exploration of Media Processors 257

IF

Instruction
Fetch

DE

Decode

RA

Register
Access

EX1

Execute
1

EXn

Execute
n

WB

Writeback

Vector
Unit

Fig. 3. Vector Unit pipeline

memories and external slaves through a configurable bus system. Eventually, if
this processor is integrated in a multi-core system, dual port intercore memories
can be added to allow shared memory communication.

2.2 Specialized Instructions and Functional Units

The VU implements an orthogonal instruction set that contains several exten-
sions for typical video processing computations, e.g. data formatting, different
kinds of rounding, multiply-and-accumulate operations [3]. To facilitate adding
new instructions and functional units, most instructions use a common bit-
pattern (see Figure 4). Move and flow operations use different patterns. Access
to memory or special registers, e.g. address registers for indirect addressing mode
or configuration registers located in the functional units, are performed by move
operations.

R_R_R mode OPCODE
OPTIONAL

FLAGS
OPERAND 1

Reg. / Address Reg.
OPERAND 2

Reg.
TARGET

Reg. / Address Reg.

R_I_R mode OPCODE
OPTIONAL

FLAGS
OPERAND 1

Reg. / Address Reg.
OPERAND 2

Immediate 6-bit
TARGET

Reg. / Address Reg.

R_IL_R mode OPCODE
OPTIONAL

FLAGS
OPERAND 1

Reg. / Address Reg.
TARGET

Reg. / Address Reg.
OPERAND 2

Immediate 32-bit

32-bit 32-bit

Fig. 4. Instruction types

Functional units are represented by a set of characteristics, e.g. latency, which
is expressed in number of execution stages, and type and number of operands,
which are related with the number of read and write ports required in the register
file. An instruction example is the multiply-and-accumulate (MAC) operation
in a R R R instruction (see Figure 4). It requires 2 read registers that contain
the data to be multiplied, 2 read registers that contain the value to be added to
the multiplication result and 2 write registers that store the double-sized MAC
result. Additionally, each instruction has different variants depending on the
functional units, e.g. condition read and set, overflow and saturation modes, or
resolutions to fix the subword parallelism type. Table 1 shows the implemented
functional units and some of their characteristics.

Another interesting feature is that a VU can execute all kind of operations in
either of its two issues. Therefore, two operations that execute the same function

www.manaraa.com

258 G. Payá-Vayá et al.

Table 1. Details about the functional units implemented: operations performed, la-
tency required and number of register written in the write-back (WB) stage. MV, LS
and FLOW are not considered functional units. Latency in FLOW operations indicates
cycles required before evaluating the branch.

Functional Operations performed Latency Write
Units (typical) Registers

AU Arithmetic 1 1
MAC Multiplication and 2 1 or 2

Multiply and Accumulation
LU Logic 1 1
SR Shift and Round 1 1

CMM Clip, Max and Min 1 1
FOR Data formatting 1 1

MV Move 1 or 3 0 or 1
LS Load and Store 1 0 or 1

FLOW Control flow 2 or 3 0 or 1

can only be scheduled in the same instruction, if the needed functional unit has
been replicated for the desired architecture configuration. This operation pairing
is represented in a matrix (see Table 2).

Table 2. Operation pairing in a vector unit (typical configuration: no functional unit
replicated). (*) This pairing is only possible if a MV operation does not access memory.

Issue 1-0 NOP AU MAC LU SR CMM FOR MV LS FLOW
NOP yes yes no yes yes yes yes yes yes yes

AU yes no no yes yes yes yes yes yes yes

MAC yes yes no yes yes yes yes yes yes yes

LU yes yes no no yes yes yes yes yes yes

SR yes yes no yes no yes yes yes yes yes

CMM yes yes no yes yes no yes yes yes yes

FOR yes yes no yes yes yes no yes yes yes

MV yes yes no yes yes yes yes yes* no* yes

LS yes yes no yes yes yes yes no* no yes

FLOW yes yes no yes yes yes yes yes yes no

2.3 Multiple Vector Unit and Partitioned Register File

In some applications, using a higher degree of parallelism results in considerably
more performance. This can be achieved by increasing the number of VUs to
two or even three within the architecture as shown in Figure 5. The pipeline
configuration is mostly the same (see Figure 6), with the exception of the IF
stage, which is now common for all VUs. The other stages are independent for
each VU. In this new architecture, every VU has its own data memory and DMA,
allowing multiple transfers in parallel (if allowed by the bus system).

www.manaraa.com

Design Space Exploration of Media Processors 259

Instruction Memory

Two Instr. Decoder Two Instr. Decoder

Vector
Register File

V0RX

Issue 0 Issue 1 Issue 2 Issue 3

Vector
Register File

V1RX

Vector
Register File

V2RX

Vector
Register File

V3RX

Vector
Register File

V3RX

ALU
Special

FU
Special

FU
MUL /
MAC

ALU
Special

FU
Special

FU
MUL /
MAC

Data Memory Data Memory

VECTOR UNIT 0 VECTOR UNIT 1

DMA
Interface 0

DMA
Interface 1

Fig. 5. Dual VU architecture

The use of multiple VUs implicates a redesign of the register file structure.
On the one hand, having a unique register file for two VUs (with two issues
each) results in implementing a 16 read and 8 write ports memory, which is
not practicable. On the other hand, having separated register files for each VU
(i.e. cluster [14]) results in inefficient inter-VU data transfers. Therefore, the
register file structure for multiple VUs can be implemented in a circular manner
as shown in Figure 5. This new register file structure increases the operation
parallelism allowing to parallelize operations that require same functional units
and same input data. Input data is not duplicated, instead it is stored in the
register file located between VUs. This structure occupies less area and improves
timing performance of the hardware implementation.

Depending on the required number of ports, the register file structure is con-
figurable. For example, there are some functional units that, due to the output

IF

Instruction
Fetch

DE

Decode

RA

Register
Access

EX1

Execute
1

DE

Decode

RA

Register
Access

EX1

Execute
1

Vector
Unit 0

Vector
Unit 1

EXn

Execute
n

WB

Writeback

EXn

Execute
n

WB

Writeback

Fig. 6. Dual VU pipeline architecture

www.manaraa.com

260 G. Payá-Vayá et al.

1VU_2r1w ISSUE 0 ISSUE 1

Register File
V0RX

Register File
V1RX

MUX MUX MUX MUX

MUX MUX

Read
Control

Write
Control

ISSUE 0 ISSUE 1

1VU_4r2w ISSUE 0 ISSUE 1

Register File
V0RX

Register File
V1RX

Read
Control

Write
Control

ISSUE 0 ISSUE 1

2VU_4r2w ISSUE 0 ISSUE 1

Register File
V0RX

Register File
V1RX

Read
Control

Write
Control

ISSUE 0 ISSUE 1

ISSUE 2 ISSUE 3

Register File
V2RX

Register File
V3RX

ISSUE 2 ISSUE 3

Fig. 7. Register file control signals for different configurations (dot-lines for better
visualisation)

resolution, require storing the results in two registers (see section 2.2). This
means that 3 write ports, even 4 in case of duplicating these functional units,
should be available in a register file. Different register file structures for single
and dual VU are shown in Figure 7.

Certainly, to properly compare the performance on different configurations
of a different application, a parameterized scheduler that efficiently exploits the
available hardware resources of each configuration is mandatory.

3 Parameterized Scheduler

In order to exploit ILP of an application and utilize hardware resources effi-
ciently, an aggressive instruction scheduler [15] is needed. The scheduler reor-
ganizes independent operations to a compacted microprogram for the chosen
architecture configuration. Due to the complexity of the possible generic VLIW
processor configurations, only local code compaction techniques [9] will be con-
sidered. The algorithm used is based on an enhanced list scheduling including
sophisticated features, e.g. backtracking. The scheduler is parameterized to uti-
lize hardware resources of different types of VLIW architecture configurations
efficiently.

The assembler, written in C, divides an input assembly application program
into collections of consecutive branch-free operation sequences, called straight

www.manaraa.com

Design Space Exploration of Media Processors 261

line microcodes (SLMs) or basic blocks. After that, the scheduler analyzes data
dependencies of all operations in a SLM and reorganizes operations that neither
depends on nor conflicts with other operations to form a sequence of instructions.
Finally, the assembler compiles sequences of instructions of each SLM to the
compacted microprogram. This general process of local code compaction is shown
in Figure 8.

Register allocation is an issue that influences the quality of the compacted mi-
croprogram regardless of the architecture of the processor. It is obvious that, for
the same hardware configuration, compaction efficiency gets worse if any register
is used too often, producing redundant data dependencies. Register allocation
is performed manually with good results, since scheduler output can be used as
a guideline for register reallocation. However, it is planned to automate register
allocation in the future versions of the scheduler.

3.1 Scheduler Structure

The scheduler operating mode depends on the properties of the operations and
the underlying hardware architecture. Relevant operation properties are the uti-
lized functional unit, accessed registers, number of read and write ports of the
register file and latency. Significant architecture information is, for example,
number of vector units, types and number of functional units, number of read
and write ports of vector register files and their configuration.

To parameterize the scheduler, its implementation should be loosely bound
to the hardware architecture and operations. One approach is storing architec-
ture description and operations in tables. For instance, the operation set table
contains the functional units, the type of operands and the latency required by
all possible operations. When new operations are introduced or the number of
stages in the pipeline is extended, this table has to be modified and the scheduler
will be able to handle those new operations. The operation pairing table (see
Table 2) is used to reflect the number of functional units. The vector register
files table specifies the vector register file configuration and the number of ports
available (see Figure 7). This approach is also useful when describing special
parts of the architecture, like indirect address register files that have two access
modes depending on the operation addressing mode used (direct or indirect),
operations that implicitly access special registers (most of them effect control
flow of the program) and operations having variable latency depending on their
operands.

3.2 Enhanced List Scheduling Algorithm

The scheduling process is shown in Figure 9. The first step is a data dependency
analysis. The output of this process is a data dependency graph (DDG) which
can be represented in a matrix form. The DDG provides information about the
instruction order to preserve semantic equivalence with the input program. The
list scheduling is a particular tree searching algorithm with heuristic functions,

www.manaraa.com

262 G. Payá-Vayá et al.

Parser Scheduler Linker

SLMs

Sequences
of

instructions
Syntax and
semantic
checking

Data
dependency

analysis

Scheduling
process

Link compacted
sequence of
instructions

ASSEMBLER

Assembly
programm

Compacted
microprogram

Fig. 8. Assembler and local code compaction

e.g. critical path heuristic. The major advantages of list scheduling are its mod-
erate complexity and its acceptable performance. However, drawbacks of list
scheduling algorithm are lacking the ability to undo decisions that led to worsen
results and missing heuristic functions to evaluate hardware resources. The en-
hanced list scheduling overcomes the mentioned drawbacks using backtracking
to undo inappropriate decisions. Additional heuristic function is used to allow
hardware resource management.

A detailed explanation about the enhancements developed for the list schedul-
ing is not focus of this paper and has therefore been postponed for a future
publication.

4 Design Space Exploration Example

In this section, performance statistics for a specific application on different con-
figurations of the generic VLIW architecture are presented. Architectural deci-
sions should be combined in the future with physical parameters, i.e. area and
timing, to obtain detailed evaluation results.

4.1 H.264 Motion Compensated Prediction

H.264/AVC is the latest video coding standard, and provides gains in com-
pression efficiency of up to 50 % compared to previous standards [16]. This
compression efficiency requires the use of powerful processors. For example, the
H.264/AVC baseline decoder is two to three times more complex than an H.263
baseline decoder in a Pentium 3 platform [17]. For H.264/AVC decoding, motion
compensated prediction is one of the most time consuming routines.

H.264 motion compensated prediction (MC) uses displacement vectors accu-
racy of a quarter of a picture element (quarter-pel). These fractional-pel displace-
ments are generated by interpolating sub-pel positions. Therefore, a 6-tap FIR
filter has to be applied horizontally and vertically to generate half-pel. Quarter-
pel positions are obtained by averaging the luminance signal at full- and half-pel
positions [10]. Each motion vector can specify 8 different situations depending
on the sub-pel position (Full, Half or Quarter) and the directions (Horizontal
and Vertical). Chrominance signal is generated by averaging.

www.manaraa.com

Design Space Exploration of Media Processors 263

SCHEDULING PROCESS

Schedule independent
instructions with the

highest priority. Priority
computed with heuristic

functions

Use backtracking
functionality if better
choices are found

Schedule instructions
with weak dependency

VLIW ARCHITECTURE DEFINITION

- Functional units used
- Register file read/write ports needed
- Latency
- Special operation modifiers

- Number of VUs
- Vector register file configuration
- Instruction pairing
- Special hardware configuration

Parameterized instruction table

Parameterized hardware architecture

Instructions
sorted by

dependencies

- Functional units
- Free issues
- R/W ports

SCHEDULER CORE

Data dependency
graph (DDG)

Check resources

Fig. 9. Scheduler core and scheduling process

A full operational 4x4 block motion compensated prediction routine has been
developed. Two different versions of the same code are available and optimized
for an architecture with one and two VUs, respectively.

4.2 Performance Measures

Using the previous application as an input, a static performance measure has
been applied. The measure is based on the maximum number of system clock cy-
cles required (see Figure 10) for computing a motion compensated prediction of
a 16x16 block. Analyzing the results, affirmations concerning the achievable per-
formance on different architecture configurations can be made (see Table 3). All
architecture configurations have a 64-bit datapath and, if no otherwise specified,
the register file size is 32x64 and the latency of the functional units correspond
to the values from Table 1.

The proposed register file structure used on the 1VU 4r2w configuration re-
quires the same number of cycles as the 1VU 8r4w configuration with only one
register file. On the other hand, the 1VU 2r1w configuration requires more cycles
because of penalties introduced by the MAC operations, which requires storing
the results on two registers. Therefore scheduling other instructions together
with the MAC operation is impossible. Finally, the architectural decision will
be a trade-off between achievable performance, programming flexibility and chip
area. The proposed register file structure allows dramatical gate count reduc-
tion due to reduced number of read/write ports needed without performance
degradation.

Duplicating functional units reduces hardware resource conflicts and allow
more flexible scheduling. For example, by duplicating the SR and CMM units,

www.manaraa.com

264 G. Payá-Vayá et al.

Table 3. Generic VLIW architecture configurations used in the example

Name Description

1VU 2r1w One VU and two register files with 2 read / 1 write ports.

1VU 4r2w One VU and two register files with 4 read / 2 write ports.

1VU 8r4w One VU and one reg. file (64x64) with 8 read / 4 write ports.

1VU 4r2w 2SR 2CMM One VU and two register files with 4 read /2 write ports.
Two SRs and two CMMs replicated functional units.

1VU 4r2w Lat One VU and two register files with 4 read / 2 write ports.
MAC unit with latency 3. AU and SR units with latency 2.

2VU 4r2w Two VUs and four register files with 4 read / 2 write ports.

2VU 4r2w Lat Two VUs and four register files with 4 read / 2 write ports.
MAC unit with latency 3. AU and SR units with latency 2.

the scheduling efficiency, i.e. the percentage of no-NOP instructions in the code,
increases up to 80% (see Table 4). Although more execution stages introduce a
high latency, performance gains can be achieved since operation frequency could
be significantly higher. This architectural modification can aggravate scheduling
due to data depencencies.

Finally, using a second VU decreases the scheduling efficiency down to 60%,
but also decreases the amount of cycles required by the H.264 task. This perfor-
mance improvement should be taken with care, because more area for hardware
implementation is needed.

In contrary to synthetic sequences, motion compensated prediction is not
needed for every macroblock. Moreover, not always the most time consuming
mode, HH (see Figure 10), is used. By processing real movie sequences, dynamic
performance can be measured (see Figure 11). Assuming a 10 frames buffer,
the following results are obtained. While 1VU 2r1w configuration requires an
average of 3.61M cycles per frame, the 2VU 4r2w configuration only requires
2.15M cycles. Therefore, a hardware implementation of the latter configuration
allows real time processing (720x576@30fps) at only 65 MHz.

Table 4. Application code size (in 64 or 128 bit word for one VU or two VU re-
spectively) for the different generic VLIW architecture configurations and scheduling
efficiency (percentage of no-NOP operations in the complete code)

1VU 1VU 1VU 1VU 1VU 2VU 2VU
2r1w 4r2w 8r4w 4r2w 2SR 2CMM 4r2w Lat 4r2w 4r2w Lat

Size 631 567 567 555 608 466 507

Compaction 70.4% 78.3% 78.3% 80.0% 73.1% 62.0% 57.0%

www.manaraa.com

Design Space Exploration of Media Processors 265

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

M
B 1

6x
16

 F
F

M
B 1

6x
16

 H
F

M
B 1

6x
16

 Q
F

M
B 1

6x
16

 F
H

M
B 1

6x
16

 F
Q

M
B 1

6x
16

 H
H

M
B 1

6x
16

 H
Q

M
B 1

6x
16

 Q
H

M
B 1

6x
16

 Q
Q

C
yc

le
s

1V
U_2

r1
w

1V
U_4

r2
w

1V
U_8

r4
w

1V
U_4

r2
w_2

SR_2
CM

M

1V
U_4

r2
w_L

at
2V

U_4
r2

w

2V
U_4

r2
w_L

at

Fig. 10. Number of system clock cycles required by the H.264 motion compensated
prediction task for different generic VLIW architecture configurations (see Table 3)

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156 162

Frame

N
u

m
b

er
 o

f
cy

cl
es

1VU_2r1w

1VU_4r2w

2VU_4r2w

Fig. 11. Number of system clock cycles per frame used for the motion compensation
routine in an H.264 video decoder application. Input is a commercial movie sequence
with 720x576 frame size.

5 Conclusions

An environment for exploring and optimizing VLIW architectures for multime-
dia applications has been presented. Based on previous work, a generic VLIW
architecture has been implemented as an executable specification, written in an
object-oriented language. An assembler, with the corresponding scheduler, has
been also developed. Both, model and assembler, are configurable in terms of
architectural parameters, like type and number of functional units, word size

www.manaraa.com

266 G. Payá-Vayá et al.

and number of register file ports, memory sizes, etc. Therefore, any application
can be run on different hardware configurations and hereby assist the hardware
developer at exploring the design space.

The motion compensated prediction algorithm of the H.264 video coding stan-
dard has been implemented for this architecture and scheduled for different con-
figurations. The application code size and the dynamic performance for different
architecture configurations, which consist of one Vector Unit and a vector reg-
ister file structure with different sizes and number of ports, demonstrate the
performance of the novel partitioned register file structure presented in this pa-
per. More precisely, there is no difference in scheduling efficiency between a 4r2w
and a 8r4w register file configuration.

The flexibility of the architecture model and the scheduler allowed assembling
and simulating the chosen application with different architecture configurations.
Therewith, dynamic performance measurements using real movie sequences have
been obtained. These present a performance improvement of up to 67%, when
comparing the configuration consisting of one VU with a 2r1w register file and
the configuration consisting of two VUs with a 4r2w register file.

References

1. Dasu, A., Panchanathan, S.: A survey of media processing approaches. Circuits
and Systems for Video Technology, IEEE Transactions on 12(8) (2002) 633–645

2. Fridman, J.: Sub-word parallelism in digital signal processing. Signal Processing
Magazine, IEEE 17(2) (2000) 27–35

3. Lee, R., Fiskiran, A., Shi, Z., Yang, X.: Refining instruction set architecture for
high-performance multimedia processing in constrained environments. Application-
Specific Systems, Architectures and Processors, 2002. Proceedings. The IEEE In-
ternational Conference on (2002) 253–264

4. Berekovic, M., Stolberg, H.J., Kulaczewski, M.B., Pirsch, P., Müller, H., Runge,
H., Kneip, J., Stabernack, B.: Instruction Set Extensions for MPEG-4 Video. J.
VLSI Signal Process. Syst. 23(1) (1999) 27–49

5. Espasa, R., Valero, M.: Exploiting instruction- and data-level parallelism. Micro,
IEEE 17(5) (1997) 20–27

6. Kneip, J., Berekovic, M., Pirsch, P.: An algorithm-hardware-system approach to
VLIW multimedia processors. In: Multimedia Signal Processing, 1997., IEEE First
Workshop on. (1997) 433–438

7. Gong, J., Gajski, D., Narayan, S.: Software estimation using a generic-processor
model. In: European Design and Test Conference, 1995. ED&TC 1995, Proceed-
ings. (1995) 498–502

8. Fisher, J., Faraboschi, P., Desoli, G.: Custom-fit processors: letting applications
define architectures. In: Microarchitecture, 1996. MICRO-29. Proceedings of the
29th Annual IEEE/ACM International Symposium on. (1996) 324–335

9. Landskov, D., Davidson, S., Shriver, B., Mallett, P.W.: Local Microcode Com-
paction Techniques. ACM Comput. Surv. 12(3) (1980) 261–294

10. ISO/IEC: Coding of Audiovisual Objects - Part 10: Advanced Video Coding.
ISO/IEC 14496-10:2003 (2003)

www.manaraa.com

Design Space Exploration of Media Processors 267

11. Stolberg, H.J., Berekovic, M., Friebe, L., Moch, S., Flügel, S., Mao, X., Ku-
laczewski, M.B., Klusmann, H., Pirsch, P.: HiBRID-SoC: A Multi-Core System-
on-Chip Architecture for Multimedia Signal Processing Applications. In: DATE
’03: Proceedings of the conference on Design, Automation and Test in Europe,
Washington, DC, USA, IEEE Computer Society (2003) 189–194

12. Synopsys: Vera User Guide. (2003) version 6.0.
13. Haque, F., Khan, K., Michelson, J.: The Art of Verification with VERA. Verifica-

tion Central (2001)
14. Lapinskii, V., Jacome, M., de Veciana, G.: Application-specific clustered VLIW

datapaths: early exploration on a parameterized design space. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on 21(8) (2002)
889–903

15. Taptimthong, P.: Design, Implementation and Verification of an Assembler Trans-
lation Program for a VLIW Processor Model. Master’s thesis, Institute of Micro-
electronic Systems. University of Hannover (2006)

16. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stock-
hammer, T., Wedi, T.: Video coding with H.264/AVC: tools, performance, and
complexity. Circuits and Systems Magazine, IEEE 4(1) (2004) 7–28

17. Horowitz, M., Joch, A., Kossentini, F., Hallapuro, A.: H.264/AVC baseline profile
decoder complexity analysis. Circuits and Systems for Video Technology, IEEE
Transactions on 13 (July 2003) 704– 716

www.manaraa.com

Modeling of Interconnection Networks in Massively
Parallel Processor Architectures

Alexey Kupriyanov1,�, Frank Hannig1,�, Dmitrij Kissler1,�, Jürgen Teich1,�,
Julien Lallet2,§, Olivier Sentieys2,§, and Sébastien Pillement2,§

1 Department of Computer Science 12, Hardware-Software-Co-Design,
University of Erlangen-Nuremberg, Germany

{kupriyanov, hannig, kissler, teich}@cs.fau.de
2 IRISA/R2D2, University of Rennes, France

{lallet, sentieys, pillemen}@irisa.fr

Abstract. In this paper, we present a new concept for modeling of intercon-
nection networks in the field of massively parallel processor embedded architec-
tures. The main focus of the paper is on two interconnection concepts, namely,
interconnect-wrapper and DyRIBox definitions of reconfigurable interconnection
networks. We compare both interconnection concepts against each other and for-
mally prove their equality. Both concepts allow to model many different recon-
figurable inter-processor networks efficiently. Furthermore, we point out how to
define the interconnect using an architecture description language for massively
parallel processor architectures called MAML. Finally, we demonstrate the per-
tinence of our approach by modeling and evaluation of different reconfigurable
interconnect topologies.

1 Introduction

The desire for more mobility and the enthusiasm for ubiquitous electronic gadgets on
the one hand side and the unbowed progress in semiconductor industry on the other
hand are driving forces in the market of embedded digital systems. These application
specific systems have to fulfil different performance, cost, and power requirements. In
addition, changing standards or add-ons as unique selling point of a product demand for
more flexible solutions. Thus, generic highly parameterizable architecture templates in
terms of IP-cores (intellectual property) have become more and more important when
building such so-called Systems-on-a-Chip (SoC).

In the domain of application specific instruction set processors (ASIP), there exist
some holistic design methodologies which consider the simultaneous development of
architectures, simulators, and compilers. Central link between the different design as-
pects are Architecture Description Languages (ADL). In the following we only refer
a few of the most known ADLs. At the ACES laboratory of the University of Califor-
nia, Irvine, for example, the architecture description language EXPRESSION [6] has

� Supported in part by the German Science Foundation (DFG) in project under contract TE
163/13-1.
§ This work has been supported by the French-German Reasearch Network Programm P2R.

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 268–282, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Modeling of Interconnection Networks in Massively Parallel Processor Architectures 269

been developed. From an EXPRESSION description of an architecture, the retargetable
compiler EXPRESS and the cycle-accurate simulator SIMPRESS can be automatically
generated. The Trimaran system [16] has been designed to generate efficient VLIW
code. It is based on a fixed basic architecture (HPL-PD) being parameterizable in the
number of registers, the number of functional units, and operation latencies. Parameters
of the machine are specified in the description language HMDES. The ADL LISA [14]
is the basis for a retargetable compiled approach aiming at the generation of fast simula-
tors for microprocessors even with complex pipeline structures. Finally, we refer to the
language MAML which has been developed in the BUILDABONG project [5]. MAML
is used for the efficient architecture/compiler co-generation of ASIPs and VLIW pro-
cessor architectures.

Beside the classical usage of DSPs for dataflow dominant digital signal processing
several architectures based on massively parallel processor arrays are emerging. Many
academic coarse-grained reconfigurable arrays have been developed [7] and, since a
while, more and more commercial ones are being developed like the D-Fabrix [3], the
DRP from NEC [13], the PACT XPP [2], or Bresca from Silicon Hive (Philips) [15]. All
of the above described ADLs only target at the design of ASIPs and VLIW processors.
Only very few approaches are known that consider also coarse-grained processor ar-
rays. For instance, DRAA [11] is a generic reconfigurable architecture template which
can represent a wide range of coarse-grained reconfigurable arrays or the Adres [12] re-
configurable architecture template which is described by an architecture description in
XML. Furthermore in [1,12], the authors use their ADL in order to explore different in-
terconnect topologies. In this context the contributions of our paper can be summarized
as follows:

1. We introduce two generic reconfigurable interconnect methodologies for parallel
processor architectures (Section 2),

2. By graph and formal languages theory we proof the equivalence of the two models
(Section 2.3),

3. We extend our ADL MAML in order to model the two interconnect concepts (Sec-
tion 3),

4. We perform a case-study for different well-known interconnect topologies and eval-
uate the cost for the flexibility being able to switch from one topology to another
by dynamic reconfiguration (Section 4).

2 Modeling of Interconnection Networks

Since design time and cost are critical aspects during the design of processor architec-
tures it is important to provide efficient modeling techniques in order to evaluate archi-
tecture prototypes without actually designing them. In the scope of the methodology
presented here, we are looking for a flexible reconfigurable interconnect architecture in
order to find out trade-offs between different interconnect topologies for a given set of
applications.

Generally, a massively parallel processor architecture is defined by an array of pro-
cessing elements P =‖ pi j ‖, i = [1,M], j = [1,N] and its interconnect as shown in
Fig. 1 (a). Usually, a centralized approach is a classical and convenient way to model

www.manaraa.com

270 A. Kupriyanov et al.

N in

Ein

Sin

W in

P out

N out Eout Sout W out P in

· cij

(b)

· · · · · · · ·

·
·
·
·

·
·
·
·
·

i

j

(a)

cij ←
{

1, if ∃ a possible connection,
0, otherwise;

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · ·

· · ·
· · ·

· · ·

p1,1 p1,2 p1,N

pM,1 pM,2 pM,N

w

e

ns

iw1,1 iw1,2 iw1,N

iwM,1 iwM,2 iwM,N

pin
1 pin

f

pout
opout

1

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

...
...

...

Fig. 1. In (a), a structure of parallel processor architecture with interconnect modeled by the use
of interconnect-wrappers (IW). In (b), a configuration of an IW - interconnect adjacency matrix.

the interconnection of the processing elements (PE). In this case, the processors are
connected to one or more central switch-nodes, which provide the reconfigurable inter-
connect. Whereas, a decentralized approach may be more reasonable in case of homo-
geneous architectures. In the following, we present a modeling concept for distributed
reconfigurable interconnect, compare it to the classical approach, and formally prove
their equality. This will show an ability of the decentralized approach to model an
arbitrary dynamically reconfigurable interconnect topology. But first, we introduce a
decentralized concept for modeling reconfigurable interconnection based on so-called
interconnect-wrappers and a classical centralized interconnection approach called
DyRIBox.

2.1 Modeling of Interconnection Network Using Interconnect-Wrappers

In order to model and specify a reconfigurable interconnect topology, a PE interconnect-
wrapper (IW) [9, 10] concept is introduced. An interconnect-wrapper describes the in-
going and outgoing signal ports of a processing element. Each interconnect wrapper
has a constant number of inputs and outputs on each of its sides which are connected
to the inputs and outputs of neighbor IW instances. An arbitrary massively parallel pro-
cessor array can be defined as a tuple A = (P, IW) with an array of PEs P =‖ pi j ‖ and
an array of interconnect-wrappers IW =‖ iwi j ‖, i = [1,M], j = [1,N]. Each process-
ing element is represented by the sets of ingoing and outgoing ports p = (pin, pout),
where pin = {pin

1 , . . . , pin
f }, pout = {pout

1 , . . . , pout
o }. An interconnect wrapper is repre-

sented as a rectangle around a PE and consists of the input and output ports on the
northern, eastern, southern, and western side of it as shown in Fig. 1 (a). However,
we require the input ports and the output ports on the opposite sides of an IW (i.e.,
northern inputs and southern outputs) to have equal bitwidths. Also, the number of
them must be the same. Introduction of this condition proves the correct interconnec-
tion between neighbor IW instances. The condition can be completely satisfied by the

www.manaraa.com

Modeling of Interconnection Networks in Massively Parallel Processor Architectures 271

introduction of directed interconnect channels. Each directed interconnect channel rep-
resents a pair of one input and one output port on the opposite sides of the interconnect
wrapper with a certain common bitwidth. The direction of the channel is determined
by the position of the output port. For example, if we consider a pair of northern input
and southern output IW ports, then the direction of corresponding interconnect channel
is southward. The interconnection between all interconnect-wrappers of the processor
array is correct if and only if each IW has equivalently directed interconnect chan-
nels. An interconnect-wrapper is defined by a quintuple iw = (CS,CN,CE,CW,C) with
southward channels CS = {cs1, . . . ,css}, northward channels CN = {cn1, . . . ,cnn}, east-
ward channels CE = {ce1, . . . ,cee}, and westward channels CW = {cw1, . . . ,cww}. The
configuration of an interconnect-wrapper is defined by C =‖ ci j ‖. C is the so-called
interconnect adjacency matrix (IAM) (see Fig. 1 (b)). By the configuration of an IW,
the definition of the mapping of the possible connections between the ports of an in-
terconnect wrapper and a processor element is meant. Therefore, the particular ports of
an IW should be considered instead of interconnect channels (the pair of ports). The
rows of IAM represent the input ports of an IW, except the last few rows (dependent
on the number of the PEs output ports) which represent the output ports of the PE. The
columns represent the output ports of an IW, except the last few columns (dependent on
the number of the PEs input ports) which represent the input ports of the PE. The ma-
trix contains the values ci j which are equal to ”1” if there exists a possible connection
between input and output ports and equal to ”0” otherwise. The last rows and columns
of IAM represent the port mapping between PE and IW ports. The positions of input
PE ports are interchanged with the positions of the output PE ports in the IAM. This
allows to avoid the configuration of such incorrect connections as a connection between
IW input and PE output or a connection between PE input and IW output. If many input
signals are allowed to drive a single output signal a multiplexer (see Definition 1) with
appropriate number of input signals is generated.

Definition 1 (Multiplexer). A multiplexer f is a boolean function where f : B
n+m → B

with inputs I f = {x0 . . .xn−1} and control signals S f = {s0 . . . sm−1} (with m = �log2(n)�
and n inputs): f (x0 . . .xn−1,s0 . . . sm−1) = xu(s0...sm−1) , where u(s0 . . . sm−1) is the inter-
pretation of the positive binary number s0 . . . sm−1.

The inputs of a multiplexer are connected to the corresponding IW input signals and the
output to the corresponding IW output signal. The control signals for such generated
multiplexers are stored in configuration registers and can therefore be changed dynam-
ically. By changing the values of the configuration registers in an interconnect-wrapper
component, different interconnect topologies can be implemented and changed dynam-
ically at run-time. Configuration registers and reconfiguration mechanisms are not in
the scope of this paper.

In order to be able to compare the interconnect-wrapper concept to others, a parallel
processor architecture with IW-based interconnect is represented as a directed graph
GIW (V,E). Initially, the processor architecture is given by a netlist (see, Definition 2).

Definition 2 (Netlist). A netlist N = (V,F) is a set V of logic elements and a set F of
nets interconnecting the elements v ∈ V with each other. It defines a circuit in terms of

www.manaraa.com

272 A. Kupriyanov et al.

· · · · · ·

· · · · · ·

.

.

.

.

.

.

.

.

.

.

.

.

· · ·

· · ·

pi,jiwi,j

Netlists
pi,j

· · ·

.

.

.

.

.

.

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

.

.

.

· · · · · ·

· · · · · ·

· · · · · ·

· · ·· · ·

...

... GIW = (V,E)

· · · · · ·

...

...

(a) (b)

... ...

......

...
...

...
...

... ...

f0
f1

m0

m1

pout
1 pout

o

pout
1 pout

o

m0

m1

iwi,j

Fig. 2. Representation of parallel processor architecture netlist. In (a), a netlist of IW iwi, j, and in
(b), its netgraph representation.

basic logic elements. A unidirectional1 net f ∈ F, which interconnects n + m elements
will be represented through f = ({v1, . . . ,vn},{u1, . . . ,um}), where v1, . . . ,vn ∈ V are
source nodes and u1, . . . ,um ∈ V are target nodes of net f .

In Fig. 2 (a), a netlist of interconnect-wrapper iwi, j is shown. For example, net f0 is
given by f0 = ({pout

1 },{m0,m1}). Nodes named pout
i denote output ports of processing

elements whereas nodes named mi denote the multiplexer elements.
A netlist can be seen as a hypergraph, where the elements and nets are vertices and

edges, respectively. This hypergraph can be transformed into a graph by the introduction
of a netgraph concept.

Definition 3 (Netgraph). A netgraph GIW = (V,E), E ⊆V ×V is a directed graph con-
taining two disjoint sets of vertices V = Vp ∪Vm, representing the processing elements
or processor output ports Vp and multiplexer elements Vm of a given netlist N = (V,F).
Netlist interconnections are represented by directed edges e = (v1,v2) ∈ E.

In Fig. 2, an IW netlist and its netgraph GIW = (V,E) are shown. The subset of mul-
tiplexer elements Vm = {m0,m1, . . .} is shown as circles and the subset of processing
elements Vp = {pi, j} is represented by rectangles. In order to transform a given netlist
N into a netgraph G all elements of the netlist must be analyzed first and, according to
the element’s type (processing element or multiplexer), they are either included in the
subset Vp or in the subset Vm. All of the nets are represented as directed edges e ∈ E of
a netgraph GIW . In case when a net contains a n : m connection, it is transformed into
n×m directed edges of the netgraph, (in Fig. 2 (a), for f0 the case of a 1 : 2 connection
is represented which is transformed into edges (pout

1 ,m0) and (pout
1 ,m1) of the graph

GIW in Fig. 2 (b)).

1 A bidirectional net can be modeled by two unidirectional nets.

www.manaraa.com

Modeling of Interconnection Networks in Massively Parallel Processor Architectures 273

i0 i1 ik

m0 mj

o0 oj

. . .

. . .

. . .

. . .

. . .

i0 i1 ik

m0 mj

o0 oj

. . .

. . .

. . .

. . .

. . .

(a) (b)

Fig. 3. DyRIBox with multiplexer and node view

i0 i1 ik

m0 mj

o0 oj

. . .

. . .

. . .

. . .

. . .

i0 i1 ik

m0 mj

o0 oj

. . .

. . .

. . .

. . .

. . .

i0 i1 ik

m0 mj

o0 oj

. . .

. . .

. . .

. . .

. . .

i0 i1 ik

m0 mj

o0 oj

. . .

. . .

. . .

. . .

. . .

p1,2p1,1

p2,1

pM,1

p2,2

pM,2

p2,N

i0 i1 ik

m0 mj

o0 oj

. . .

. . .

. . .

. . .

. . .

p1,N

pM,N

.

...

...

...

. . .

. . .

D0

D1

D2

D4 Dn

Fig. 4. Example of a heterogeneous
architecture using DyRIBoxes for in-
terconnect modeling

2.2 Modeling of Interconnection Network Using DyRIBoxes

The second methodology to model reconfigurable parallel processor networks is used
to permit the centralized description of dynamically reconfigurable processors. In this
purpose, the interconnections have to be flexible (to be able to modify the connections
”on the fly”), parameterizable in reconfiguration time and size. In this section, we give
a brief description of the ”Dynamically Reconfigurable Interconnections Box” (DyRI-
Box) concept which assumes all these constraints.

The basic elements of a DyRIBox are multiplexers (see Definition 1) connected in a
way that any input can be connected to the desired output.

The DyRIBox formal description based on multiplexer formal description. A DyRI-
Box is a one level switching network of multiplexers. A DyRIBox D (see Fig. 3 (a)) can
be described as an oriented acyclic graph D = (V,E), where V is a number of nodes and
E ⊂ V ×V is a number of oriented edges (see Fig. 3 (b)). The set of nodes V contains a
set of inputs I(D), a set of outputs O(D), and a set of multiplexers M(D):

– deg−(v) = 0, deg+(v) > 0 , when v ∈ I(D)
– deg−(v) = 1, deg+(v) = 0 , when v ∈ O(D)
– deg−(v) = |I(D)|, deg+(v) = 1 , when v ∈ M(D),

where deg− and deg+ are input and output degrees of a node, respectively.
Each edge e ∈ E which comes in a multiplexer node v ∈ M(D) is an input iv(e) ∈

{0, . . .deg−(v)− 1}. A configuration of a DyRIBox is the following representation χ :
M(D) → N, with for all multiplexer nodes v ∈ M(D) : 0 ≤ χ(v) ≤ deg−(v)− 1 and
χ(v) is a configuration for v.

A route taken across a DyRIBox D = (V,E) is described as an oriented route R =
(v0,e0 . . .vr,er,vr+1) in the graph (V,E) with vi ∈ V and ei ∈ E where v0 ∈ I(D),vr+1 ∈
O(D) and for i = {1 . . .r} is vi ∈ M(D). The length of R is define as l(R)

de f
= r. The

source of the route R is defined as S(R) = v0 and the destination as D(R) = vr+1. The
route R is defined on a DyRIBox as soon as a χ exist with: ∀i = {1 . . .r} S(χ(vi)) = vi−1

and vr+1 = succ(vr). The predecessor of vi through the input of χ(vi) is vi−1. The

www.manaraa.com

274 A. Kupriyanov et al.

Static Direct Connections (S)

Static Direct Connections (S)

. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .
. . .

p1,1 p1,2 pM,N . . .

iw1,1 iw1,2 iwM,N

a

a

p

a

a

m

a

a
m

a

a

m

si

so

si

so

......

Si1

i2

i3

i4

ip

o1

o2

o3

o4

oq

(a) (b)

Fig. 5. Parallel processor architecture general case representation. In (a), an example of a static
direct connector is shown, in (b) the general case of interconnect-wrapper interconnection is
presented.

configuration KR from the route R is defined as all configurations from the DyRI-
Box D. This provides R to be configurable on D. It is also possible to configure two
routes R1 and R2 on one DyRIBox D using two separate multiplexer nodes with R1 =
(v0,e0 . . .vr,er,vr+1) and R2 = (v′0,e

′
0 . . .v′s,e

′
s,v
′
s+1). R1 and R2 are compatible when

the two nodes are completely disconnected: vi = v′j (∀i ∈ {1 . . .r} and ∀ j ∈ {1 . . .s}).
A massively parallel processor array can be described as an oriented acyclic graph

A = (D,P,E), where E is the set of oriented edges, D is the set of DyRIBoxes used,
and P is the set of PEs with D = ‖Dn‖(n ∈ N

+) and P = ‖Pi j‖ (∀i ∈ {1 . . .M} and
∀ j ∈ {1 . . .N}). Considering DyRIBox inputs I(D), DyRIBox outputs O(D),PE inputs
I(P), and PE outputs O(P), all the following connections are feasible (in Fig. 4):
e = (v ∈ O(D),v ∈ I(D)), e = (v ∈ O(D),v ∈ I(P)), e = (v ∈ O(P),v ∈ I(D)), and
e = (v ∈ O(P),v ∈ I(P)) with e ∈ E .

2.3 Comparison of Interconnect-Wrapper and DyRIBox Concepts

In the following, we compare both interconnection concepts. In fact, the DyRIBox con-
cept allows for modeling of all possible interconnect topologies ranging from linear ar-
rays, meshes, multistage hierarchical networks, butterflies, trees, etc. A special case of
a DyRIBox network is a full crossbar, when the number of DyRIBox inputs and outputs
is equal. In this section, we prove that interconnect-wrapper and DyRIBox interconnect
definitions are equivalent.

In order to generalize the parallel processor architecture with configurable intercon-
nect and to separate the dynamically reconfigurable interconnection from static connec-
tions we introduce an interconnect object called static direct connector (SDC).

Definition 4 (Static Direct Connector). A static direct connector (SDC) S = (Sin,Sout)
is an interconnection black-box or a tuple with an infinite set of input ports Sin =
{i1, ...ip} and infinite set of output ports Sout = {o1, ...oq}, where p → ∞, q → ∞.
The input ports are statically connected to the output ports inside of SDC.

www.manaraa.com

Modeling of Interconnection Networks in Massively Parallel Processor Architectures 275

Static Direct Connections (S)

Static Direct Connections (S)

. . .

. . .

.

.

p1,1

D1

pM,N

. . .

. . .

. . .
DK

. . .

. . .

a

a

so

si

a

a

so

si

m

p

Fig. 6. A general case of DyRIBox Interconnection

(a) (b)
LIW (GIW) LDB(GDB)

GIW = ({S,A,M},{si, so,a, p,m},PIW ,S) GDB = ({D,E,F},{si, so,a, p,m},PDB,D)
PIW = { S → soAsiS, PDB = { D → soEsiD,

S → soApAsiS, E → a,
A → a, E → aFa,
A → aMa, F → m,
M → m, F → p,
S → ε} D → ε}

Fig. 7. Representation of general case interconnect as formal language. In (a), a definition of
formal language LIW (GIW) for IW is shown, in (b), a definition of formal language LDB(GDB)
for DyRIBox is presented.

An SDC provides a formal description of a static, i.e. not configurable, interconnection
network. A graphical representation of an SDC is shown in Fig. 5 (a).

As shown in Section 2.1, a generic massively parallel processor architecture with
IW-based interconnect structure can be represented as a netgraph GIW = (V,E) (see
Definition 3). Due to Definition 4, all edges E of this directed graph can be represented
as an SDC. Therefore, a generic parallel processor architecture with IW-based inter-
connect topology can be considered as shown in Fig. 5 (b). There are only few types
of routes or signal paths through the interconnect-wrappers {iw1,1, . . . , iwM,N} possible.
All of them are shown in Fig. 5 (b): (i), a direct route through the processing element
inside of the IW, (ii), a route through the multiplexer directly connected to one of the PE
inputs (this is the case, when more than one line are connected to the input of the PE),
(iii), a route through the PE inside of the IW, where one of the PE outputs is directly
connected to the multiplexer (this is the case, when more than one line are connected
to one of the IW output ports), (iv), a route through the multiplexer directly connected
to one of the PE inputs, where one of the PE outputs is directly connected to another
multiplexer, and (v), a direct route through the multiplexer inside of the IW not pass-
ing the processing element through (this is the case, when IW input ports are directly

www.manaraa.com

276 A. Kupriyanov et al.

connected to IW output port; this route is transformed into direct connection without
passing through the multiplexer, when only one IW input port is involved).

Section 2.2 shows that a generic massively parallel processor architecture with
DyRIBox-based interconnect structure can be represented as a netgraph D = (V,E).
Therefore, in the same manner as for the interconnect-wrapper-based concept, an archi-
tecture with DyRIBox definition can be represented with an SDC as shown in Fig. 6.
The following signal paths are shown in this case: (i), a direct route through the pro-
cessing element, (ii), a direct route through the set of multiplexers which compound
a DyRIBox (in case of only one DyRIBox input and output, this route is transformed
into a direct connection). In order to describe the generalized interconnect concepts for-
mally, we make the following assumptions: Let si, so be the input and output ports of
the static direct connector, respectively. Let a be a direct connection, let p be a route
through the PE, and let m be a route through the multiplexer.

Let GIW and GDB be formal grammars [8]. Now, the definitions of IW and DyRIBox
interconnect can be considered as two formal languages LIW (GIW) and LDB(GDB), re-
spectively [8]. The definition of the formal languages is given in Fig. 7. The grammar
GIW for language LIW is defined by the finite set {S,A,M} of nonterminal symbols,
by the alphabet of terminal symbols {si,so,a, p,m}, and by the set PIW of production
rules with start symbol S. The nonterminals S, A, and M represent the possible signal
paths through the interconnect-wrapper. The grammar GDB for language LDB is de-
fined by the finite set {D,E,F} of nonterminal symbols, by the alphabet of terminal
symbols {si,so,a, p,m}, and by the set PDB of production rules with start symbol D.
The nonterminals D, E , and F represent the possible signal paths through the DiRI-
Box. An ε in both grammars denotes the empty string, i.e., the string of length 0 such
that ε /∈ LIW ∧ ε /∈ LDB. The grammars GIW and GDB are context-free grammars, as
the left hand sides of a their production rules are formed by only a single non-terminal
symbol. Moreover, both of the grammars have the same alphabet of terminal symbols
{si,so,a, p,m}. Therefore, we will prove the equivalence of modeling power of both
concepts by proving language equivalence.

Theorem 1. The PE interconnection networks based on IW are equivalent to the PE
interconnection networks based on DyRIBox: LIW (GIW) ≡ LDB(GDB).

Proof. Two formal languages are equivalent if their grammars are equivalent. The
equivalence of the grammars must be shown in both directions LDB(GDB)⊆ LIW (GIW)∧
LIW (GIW) ⊆ LDB(GDB) in order to prove the equivalence of the languages.

First, the relation LDB(GDB) ⊆ LIW (GIW) will be shown. Obviously, the following
production rules are similar: M → m ∼ F → m, A → a ∼ E → a, A → aMa ∼ E → aFa,
S → ε ∼ D → ε , and S → soAsiS ∼ D → soEsiD. The similarity of production rules
S → soApAsiS and F → p remains questionable. Consider the production rule S →
soApAsiS. After applying of a rule A → aMa on it, the derivation S → soaMapaMasiS
occurs. Let’s introduce the equivalent transformation T IW : a � asisoa. This transfor-
mation is equivalent because it physically means just a splitting of a direct connection
a into two direct connections which are connected through the input (si) and output
(so) ports of an SDC (see Fig. 8). Applying the transformation T IW on the terminals
a staying next to the terminal symbol p, the following production rule is obtained:
S′ = T IW (S → soaMapaMasiS) : S′ → soaMasisoapasisoaMasiS. The subsequence of

www.manaraa.com

Modeling of Interconnection Networks in Massively Parallel Processor Architectures 277

......

i1a S

ip

o1

oq

T IW : a � asisoa

TDB : asisoa � a ix ox

a a

si so

Fig. 8. The equivalent transformations T IW : a � asisoa and T DB : asisoa � a are presented

symbols soaMasi in S′ occurs twice and corresponds to the rule S → soAsiS which is a
start symbol of GIW . Therefore, LIW will not be changed by the elimination of this sub-
sequence. Thus, S′ takes the following form: S′→ soapasiS. We get the following set of
production rules: {S → soAsiS,A → a,A → aMa,M → m,S → ε,S′→ soapasiS}. After
integration of S′ into S the set of production rules can be rewritten: {S′→ soA′siS′,A′→
a,A′→ aM′a,M′→ m,M′ → p,S′→ ε} � PDB. Thus, LDB(GDB) ⊆ LIW (GIW).

Now, the relation LIW (GIW) ⊆ LDB(GDB) will be shown. Obviously, the following
production rules are similar: F → m ∼ M → m, E → a ∼ A → a, E → aFa ∼ A →
aMa,D → ε ∼ S → ε , and D → soEsiD ∼ S → soAsiS. The similarity of production
rules F → p and S → soApAsiS remains questionable. Let’s include the production rule
D → soEsisoEsisoEsiD in PDB. Language LDB is not changed by this operation because
D → soEsisoEsisoEsiD ≡ D → soEsiD. This is an obvious derivation after three times
applying the recursive production rule D → soEsiD. After applying the rule E → aFa
on the new included production rule, we obtain D → soaFasisoaFasisoaFasiD. Let’s
introduce the equivalent transformation T DB : asisoa � a. This transformation is equiv-
alent because it physically means replacing of a connection through the input (si) and
output (so) ports of SDC with a direct connection a (see Fig. 8). Applying the trans-
formation T DB on the subsequences of terminals asisoa, the following production rule
is obtained: D′ = T DB(D → soaFasisoaFasisoaFasiD) : D′→ soaFaFaFasiD. The sub-
sequence of symbols aFa can be replaced by the nonterminal symbol E using the pro-
duction rule E → aFa: D′→ soEFEsiD. Applying the rule F → p, D′ can be rewritten:
D′ → soE pEsiD. We get the following set of production rules: {D → soEsiD,E →
a,E → aFa,F → m,F → p,D → ε,D′ → soE pEsiD}. After integration of D′ into D
the set of production rules can be rewritten: {D′→ soE ′siD′,E ′→ a,E ′→ aF ′a,F ′→
m,D′→ soE ′pE ′siD′,D′→ ε} � PIW . Thus, LIW (GIW) ⊆ LDB(GDB). ��
According to Theorem 1, the set of interconnection networks that can be expressed us-
ing the interconnect-wrapper definition (distributed interconnection concept) is
equivalent to those that can be modeled using the DyRIBox definition (centralized in-
terconnection concept).

3 Modeling of Interconnect Structures Within MAML

In order to allow the specification of reconfigurable interconnect topologies in mas-
sively parallel processor architectures we use the MAchine Markup Language (MAML)

www.manaraa.com

278 A. Kupriyanov et al.

PEInterconnectDyRIBox name

ReconfigurationTime cycle DBPorts PElementsPorts

number
bitwidth bitwidth bitwidth bitwidth

number number number

Inputs InputsOutputs Outputs

Fig. 9. The <PEInterconnectDyRIBox> elements

DBDomain name

Interconnect type ElementsPolytopeRange

Instantiation
name
instanceOf InternalConnections

ElementsPolytopeRange...

Fig. 10. The <DBDomain> elements

[4,10]. MAML is based on the XML notation and is used for describing architecture pa-
rameters required by possible mapping methods such as partitioning, scheduling, func-
tional unit and register allocation. Moreover, the parameters extracted from a MAML
architectural description can be used for interactive visualization and simulation of the
given processor architecture. For the MAML description of interconnect-wrappers we
refer to [9, 10].

MAML description of DyRIBox and DyRIBox domain. The structure of the DyRI-
BOX element description is shown in Fig. 9. In MAML, a DyRIBox is represented by
the <PEInterconnectDyRIBox> element. It contains the attribute name which
specifies the name of the DyRIBox which is going to be described. It also contains the
following set of description subelements:<ReconfigurationTime>,<DBPorts>,
and <PElementsPorts>. The subelement <ReconfigurationTime> specifies
the number of cycles needed to dynamically reconfigure the complete DyRIBox. This
subelement is initialized by giving a value to the cycle parameter. The subelement
<DBPorts> specifies the number of ports directly connected to others DyRIBoxes.
The number of Inputs, Outputs and their bitwidth are specified by the at-
tributes. The subelement <PElementsPorts> specifies the number of ports directly
connected to the ports of processing elements. The number of Inputs, Outputs and
their bitwidth are specified by the attributes.

www.manaraa.com

Modeling of Interconnection Networks in Massively Parallel Processor Architectures 279

The DyRIBox domain description. A DyRIBox domain<DBDomain> is typically used
for describing the interconnections of heterogeneous architectures. The structure of the
DyRIBOX domain description is shown in Fig. 10. The element <DBDomain> is fol-
lowed by the attribut name which specifies the name of the DyRIBox domain which is
going to be described. It also contains a set of subelements:

– <Interconnect>
– <ElementsPolytopeRange>

<Interconnect> specifies how the interconnections are going to be described by
giving a type. The type can be manual when all connections are explicitly de-
scribed, or mesh or honeycomb or treewhen the connections are automatically gen-
erated as a mesh form or honey comb form or tree form. In case that <Interconnect>
is a manual type, the subelement <Instantiation> specifies which DyRIBox is
being used and follows the subelement <InternalConnections> which describe
the internal interconnections of the domain ports by ports one after the other.
<ElementsPolytopeRange> specifies a range of PEs in shape of a given poly-

tope which belong to the domain which is going to be described. Concerning the intercon-
nections with external resources of the DyRIBox domain, an element<PortMapping>
is given at the end of the <ProcessorArray> description.

4 Case-Study

We implemented a highly parameterizable template for the generation of parallel pro-
cessor arrays in VHDL (Very High Speed Hardware Description Language). An exam-
ple 4×4 processor array was instantiated and tested on a Xilinx Virtex-II Pro TM xc2vp100
FPGA. To reduce synthesis and mapping time, a very simple configuration was chosen
for all processing elements in the array. Each WPPE was configured to contain two

ICN Wrapper

I/O

I/O

ICN Wrapper

I/
O

I/O

I/O

I/
O

I/
O

I/
O

ICN WrapperICN Wrapper ICN Wrapper

ICN Wrapper

ICN Wrapper ICN Wrapper ICN Wrapper

ICN WrapperICN WrapperICN Wrapper

ICN WrapperICN WrapperICN WrapperICN Wrapper

Fig. 11. BFT IW-interconnection scheme em-
bedded in a 4×4 array

ICN Wrapper ICN WrapperICN Wrapper

ICN WrapperICN Wrapper ICN WrapperICN Wrapper

ICN WrapperICN Wrapper

ICN WrapperICN Wrapper

ICN WrapperICN Wrapper

ICN WrapperICN Wrapper

ICN Wrapper ICN WrapperICN Wrapper

ICN WrapperICN Wrapper ICN WrapperICN Wrapper

ICN WrapperICN Wrapper

ICN WrapperICN Wrapper

ICN WrapperICN Wrapper

ICN WrapperICN Wrapper

I/O

I/O

I/
O

I/O

I/O

I/
O

I/
O

I/
O

Fig. 12. 4D Hypercube IW-interconnection
scheme embedded in a 4×4 array

www.manaraa.com

280 A. Kupriyanov et al.

Table 1. Synthesis results for different IW-based interconnection networks in a 4×4 processor
array

Mesh 4D Hypercube BFT & 4D Hypercube

Equivalent Gates 859482 865941 875412
MUX4

1(16) 32 32 37
MUX8

1(16) 0 0 7
Logic LUT 30287 31724 32883
Route-Through LUT 302 244 140
Memory LUT 4768 4768 4768
FPGA Resources 50% 51% 52%

adder modules and one module for the transfer of control signals. The data path width
was chosen to be 16 bit. Different interconnection schemes were implemented using
interconnect-wrappers. The logical interconnection scheme for the 4D hypercube topol-
ogy is depicted in Fig. 12 and for the butterfly fat tree (BFT) topology in Fig. 11. The
results are shown in Table 1. It can be seen from the synthesis results, that starting from
the basic mesh interconnection scheme additional interconnection configurations can
be added at relative little hardware cost of roughly 2% in the case of the 4D hypercube
topology. In the case of the 4D hypercube with the additional butterfly fat tree topology
the hardware cost amounts to roughly 1%.

We also synthesized the same interconnection topologies for a 4×4 processor array
using centralized modeling approach DyRIBox (see Table 2). The logical interconnec-
tion scheme for the 4D hypercube topology is depicted in Fig. 14 and for the butterfly
fat tree (BFT) topology in Fig. 13. In order to analyze only the interconnection network
cost, here a very simple PE architecture was implemented. Each PE contains only the
registers on its input and output ports. In order to compare both approaches the IW
interconnection cost was derived from the results in Table 1. The stand-alone 6-ports
and 4-ports PEs were synthesized and their hardware costs were analyzed. The stand

wppe

wppe wppe

wppe

wppe

wppe wppe

wppe

wppe

wppe wppe

wppe

wppe

wppe wppe

wppe

DyRI

Box

DyRI

Box

DyRI

Box

DyRI

Box

Fig. 13. Butterfly fat tree (BFT) DyRIBox-
interconnection scheme

wppe

wppe wppe

wppe

wppe

wppe wppe

wppe

wppe

wppe wppe

wppe

wppe

wppe wppe

wppe

DyRI

Box

DyRI

Box

DyRI

Box

DyRI

Box

Fig. 14. 4D Hypercube DyRIBox-intercon-
nection scheme

www.manaraa.com

Modeling of Interconnection Networks in Massively Parallel Processor Architectures 281

Table 2. Comparison distributed IW approach against centralized DyRIBox concept

IW (equivalent gates) DyRIBox (equivalent gates)

Mesh 119258 189051
4D Hypercube 125717 45556
BFT & 4D Hypercube 101848 103070
Intuitive - ++
Uniform latency - +
Homogeneous architecture +++ -

alone 6-ports PE consumed 54.599 equivalent gates, whereas 4-ports PE occupied only
46.264 equivalent gates. The PE hardware costs were subtracted from the hardware
costs for the complete designs in Table 1. The DyRIBox interconnection hardware
cost was compared against derived IW interconnection cost. The comparison results
are shown in Table 2.

The centralized approach is a classical and convenient way to model the intercon-
nection of the processing elements. In this case, the processors are connected to one
or more central switch-nodes, which provide the reconfigurable interconnect. Another
advantage of DyRIBox interconnection concept is an uniform latency. Synthesis results
show more efficient DyRIBox implementation for 4D hypercube topology. Whereas, a
decentralized approach may be more reasonable in case of homogeneous architectures
such as meshes or systolic structures.

5 Conclusions and Future Work

In this paper, we introduced a new concept for modeling of interconnection networks in
the field of massively parallel processor embedded architectures. Two interconnection
concepts, namely, intercon-nect-wrapper and DyRIBox definitions of reconfigurable in-
terconnection were formally defined and compared against each other. The equivalence
of distributed and centralized interconnection concepts was formally proved which also
proved the ability of the interconnect-wrappers to efficiently model many possible in-
terconnect topologies. Moreover, we demonstrated the pertinence of our approach by
synthesis of a real 4×4 processor array with different reconfigurable interconnect topolo-
gies in a case-study.

In the future, we would like to extend MAML in order to model different transport
mechanisms like blocking FIFOs, asynchronous data-driven models, or even concepts
such as routers in Networks-on-a-Chip (NoC). This would allow for architecture explo-
ration of a vast class of processor arrays.

References

1. N. Bansal, S. Gupta, N. Dutt, A. Nicolau, and R. Gupta. Network Topology Exploration of
Mesh-Based Coarse-Grain Reconfigurable Architectures. In Proceedings Design Automation
and Test in Europe (DATE’2004), pages 474–479, Paris, France, Feb. 2004.

www.manaraa.com

282 A. Kupriyanov et al.

2. V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt. PACT XPP
– A Self-Reconfigurable Data Processing Architecture. The Journal of Supercomputing,
26(2):167–184, 2003.

3. Elixent Ltd. www.elixent.com.
4. D. Fischer, J. Teich, M. Thies, and R. Weper. Design Space Characterization for Architec-

ture/Compiler Co-Exploration. In ACM SIG Proceedings International Conference on Com-
pilers, Architectures and Synthesis for Embedded Systems (CASES 2001), pages 108–115,
Atlanta, GA, U.S.A., November 2001.

5. D. Fischer, J. Teich, M. Thies, and R. Weper. BUILDABONG: A Framework for Archi-
tecture/Compiler Co-Exploration for ASIPs. Journal for Circuits, Systems, and Computers,
Special Issue: Application Specific Hardware Design, pages 353–375, 2003.

6. A. Halambi, P. Grun, A. Khare, V. Ganesh, N. Dutt, and A. Nicolau. EXPRESSION: A
Language for Architecture Exploration through Compiler/Simulator Retargetability. In Pro-
ceedings Design Automation and Test in Europe (DATE’1999), 1999.

7. R. Hartenstein. A Decade of Reconfigurable Computing: A Visionary Retrospective. In
Proceedings of Design, Automation and Test in Europe, pages 642–649, Munich, Germany,
Mar. 2001. IEEE Computer Society.

8. J. Hopcroft. Introduction to Automata Theory, Languages and Computation. Addison-
Wesley Series in Computer Science. Addison Wesley Publishing Company, older edition,
Apr. 1979.

9. A. Kupriyanov, F. Hannig, D. Kissler, R. Schaffer, and J. Teich. MAML - An Architecture
Description Language for Modeling and Simulation of Processor Array Architectures, Part
I. Technical Report 03-2006, University of Erlangen-Nuremberg, Department of Computer
Science, Hardware-Software-Co-Design, Mar. 2006.

10. A. Kupriyanov, F. Hannig, D. Kissler, J. Teich, R. Schaffer, and R. Merker. An Architecture
Description Language for Massively Parallel Processor Architectures. In GI/ITG/GMM-
Workshop 2006 - Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, pages 11–20, Dresden, Germany, Feb. 2006.

11. J. Lee, K. Choi, and N. Dutt. An Algorithm for Mapping Loops onto Coarse-grained Re-
configurable Architectures. In Languages, Compilers, and Tools for Embedded Systems
(LCTES’03), pages 183–188, San Diego, CA, June 2003. ACM Press.

12. B. Mei, A. Lambrechts, D. Verkest, J. Mignolet, and R. Lauwereins. Architecture Exploration
for a Reconfigurable Architecture Template. In IEEE Design and Test of Computers, pages
90–101, Mar. 2005.

13. M. Motomura. A Dynamically Reconfigurable Processor Architecture. In Microprocessor
Forum, CA, 2002.

14. S. Pees, A. Hoffmann, and H. Meyr. Retargeting of Compiled Simulators for Digital Signal
Processors Using a Machine Description Language. In Proceedings Design Automation and
Test in Europe (DATE’2000), Paris, March 2000.

15. Silicon Hive. www.siliconhive.com.
16. Trimaran. http://www.trimaran.org.

www.manaraa.com

P. Lukowicz, L. Thiele, and G. Tröster (Eds.): ARCS 2007, LNCS 4415, pp. 283 – 295, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Invited Talk: Expanding Software Product Families:
From Integration to Composition

Jan Bosch

Nokia, Technology Platforms/Software Platforms,
P.O. Box 407, FI-00045 NOKIA GROUP, Finland

Jan.Bosch@nokia.com
http://www.janbosch.com

Abstract. Software product families have found broad adoption in the
embedded systems industry. Product family thinking has been prevalent in this
context for mechanics and hardware and adopting the same for software has
been viewed as a logical approach. During recent years, however, the trends of
convergence, end-to-end solutions, shortened innovation and R&D cycles and
differentiation through software engineering capabilities have lead to a
development where organizations are stretching the scope of their product
families far beyond the initial design. Failing to adjust the product family
approach, including the architectural and process dimensions when the business
strategy is changing is leading to several challenging problems that can be
viewed as symptoms of this approach. This paper discusses the key symptoms,
the underlying causes for these symptoms as well as solutions for realigning the
product family approach with the business strategy.

Keywords: Software product families, compositionality.

1 Introduction

Mobile phones have, over the last decade, evolved from basic devices aimed
primarily at the voice and SMS use cases to a rich set of mobile devices ranging from
mobile multi-media computers to mobile enterprise devices. Contemporary mobile
devices support a rich set of use cases including taking still and video pictures,
playing music, watching television, reading email, instant messaging, navigating, etc.
In response to the enormous increase in the features required from mobile devices, the
demands on the software present in the mobile device have increased similarly. The
developments in the mobile devices industry are illustrative examples of the general
trend in embedded systems: the investment in software R&D has increased by an
order of magnitude during the last decade.

One can identify three main trends that are driving the embedded systems industry,
i.e. convergence, end-to-end functionality and software engineering capability. The
convergence of the consumer electronics, telecom and IT industries has been
discussed for over a decade. Although many may wonder whether and when it will
happen, the fact is that the convergence is taking place constantly. Different from
what the name may suggest, though, convergence in fact leads to a portfolio of

www.manaraa.com

284 J. Bosch

increasingly diverging devices. For instance, in the mobile telecom industry, mobile
phones have diverged into still picture camera models, video camera models, music
player models, mobile TV models, mobile email models, etc. This trend results in a
significant pressure on software product families as the amount of variation to be
supported by the platform in terms of price points, form factors and feature sets is
significantly beyond the requirements just a few years ago. The second trend is that
many innovations that have proven their success in the market place require the
creation of an end-to-end solution and possibly even the creation or adaptation of a
business eco-system. Examples from the mobile domain include, for instance, ring
tones, but the ecosystem initiated by Apple around digital music is exemplary in this
context. The consequence for most companies is that where earlier, they were able to
drive innovations independently to the market, the current mode requires significant
partnering and orchestration for innovations to be successful. The third main trend is
that a company’s ability to engineer software is rapidly becoming a key competitive
differentiator. The two main developments underlying this trend are efficiency and
responsiveness. With the constant increase in software demands, the cost of software
R&D is becoming unacceptable from a business perspective. Thus, some factor
difference in productivity is easily turning into being able or not being able to deliver
certain feature sets. Responsiveness is growing in importance because innovation
cycles are moving increasingly fast and customers are expecting constant
improvements in the available functionality. Web 2.0 [O’Reilly 05] presents a strong
example of this trend. A further consequence for embedded systems is that, in the
foreseeable future, the hardware and software innovation cycles will, at least in part,
be decoupled, significantly increasing demands for post-deployment distribution of
software.

Due to the convergence trend, the number of different embedded products that a
manufacturer aims to bring to market is increasing. Consequently, reuse of software
(as well as of mechanical and hardware solutions) is a standing ambition for the
industry. The typical approach employed in the embedded systems industry is to build
a platform that implements the functionality common to all devices. The platform is
subsequently used as a basis when creating new product and functionality specific to
the product is built on top of the platform.

Although the platform model is easy to understand in theory, in practice there are
significant challenges. As discussed in [Bosch 00], the platform model is supposed to
capture the most generic and consequently the least differentiating functionality.
Innovations and differentiating functionality are supposed, over time, to flow from
product-specific implementations to the platform. However, in practice one can
identify at least two forces that drive innovations directly to the platform. First, in
several cases, it is clear that a novel feature or innovation will be required by all or
most future products. In this case, there is a clear rationale to implement the new
feature or innovation directly in the platform, bypassing the product-specific phase.
Second, in the case that a company also licenses the platform to other organizations in
the industry, the platform itself needs to be differentiating and contain sufficient novel
features to hold or expand its position in the face of competition from other platforms.

Second, the product specific functionality frequently does not respect the boundary
between the platform and the software on top of it. Innovations in embedded systems
can originate from mechanics, hardware or software. Both mechanical and hardware

www.manaraa.com

 Invited Talk: Expanding Software Product Families: From Integration to Composition 285

innovations typically have an impact on the software stack. However, due to the fact
that the interface to hardware is placed in device drivers at the very bottom of the
stack and the affected applications and their user interface are located at the very top
of the stack, changes to mechanics and hardware typically have a cross-cutting effect
that causes changes in many places both below and above the platform boundary. A
second source of cross-cutting changes is software specific. New products often
enable new use cases that put new demands on the software that can not be captured
in a single component or application, but rather have architectural impact. Examples
include adding security, a more advanced user interface framework or a web-services
framework. Such demands result in cross-cutting changes that affect many places in
the software, again both above and below the platform boundary.

Software product families have, in many cases, been very successful for the
companies that have applied them. Due to their success, however, during recent years
one can identify a development where companies are stretching their product families
significantly beyond their initial scope. This occurs either because the company
desires to ship a broader range of products due to, among others, convergence, or
because the proven success of the product family causes earlier unrelated products to
be placed under the same family. This easily causes a situation where the software
product family becomes a victim of its own success. With the increasing scope and
diversity of the products that are to be supported, the original integration-oriented
platform approach increasingly results in several serious problems in the technical,
process, organizational and, consequently, the business dimension.

The purpose and contribution of this paper is that it analyses the aforementioned
problems and to present alternative approaches that are better suited for broad-scoped
product families. Both the problem analysis and the proposed alternative approaches
are based on experiences from a variety of companies that the author has worked with
during the last decade. However, for reasons of confidentiality, no specific references
can be provided at this point.

In the remainder of this article, we first present a more detailed assessment of the
problems and challenges associated with the traditional, platform-based, integration
oriented approach. Subsequently, we discuss five aspects of software product families
that are most relevant when broadening the scope of a product family in section 3. We
then proceed with presenting two alternative approaches, i.e. hierarchical product
families and the compositional-oriented approach, in section 4. Finally, related work
is described in section 5 followed by the conclusions of the paper.

2 Problem Statement

This paper discusses and presents the concerns of the integration-oriented platform
approach. However, before we can discuss this, we need to first define integration-
oriented platform approach more precisely. In most cases, the platform approach is
organized using a strict separation between the platform organization and the product
organizations. The platform organization has typically a periodic release cycle where
the complete platform is released in a fully integrated and tested fashion. The product

www.manaraa.com

286 J. Bosch

organizations use the platform as a basis for creating and evolving theirs product by
extending the platform with product-specific features.

The platform organization is divided in a number of teams, in the best case
mirroring the architecture of the platform. Each team develops and evolves the
component (or set of related components) that it is responsible for and delivers the
result for integration in the platform. Although many organizations have moved to
applying a continuous integration process where components are constantly integrated
during development, in practice significant verification and validation work is
performed in the period before the release of the platform and many critical errors are
only found in that stage.

The platform organization delivers the platform as a large, integrated and tested
software system with an API that can be used by the product teams to derive their
products from. As platforms bring together a large collection of features and qualities,
the release frequency of the platform is often relatively low compared to the
frequency of product programs. Consequently, the platform organization often is
under significant pressure to deliver as many new features and qualities during the
release. Hence, there is a tendency to short-cut processes, especially quality assurance
processes. Especially during the period leading up to a major platform release, all
validation and verification is often transferred to the integration team. As the
components lose quality and integration team is confronted with both integration
problems and component-level problems, in the worst case an interesting cycle
appears where errors are identified by testing staff that has no understanding of the
system architecture and can consequently only identify symptoms, component teams
receive error reports that turn out to originate from other parts in the system and the
integration team has to manage highly conflicting messages from the testing and
development staff, leading to new error reports, new versions of components that do
not solve problems, etc.

Although several software engineering challenges associated with software
platforms have been outlined, the approach often proves highly successful in terms of
maximizing R&D efficiency and cost-effectively offering a rich product portfolio.
Thus, in its initial scope, the integration-oriented platform approach has often proven
itself as a success. However, the success can easily turn into a failure when the
organization decides to build on the success of the initial software platform and
significantly broadens the scope of the product family. The broadening of the scope
can be the result of the company deciding to bring more existing product categories
under the platform umbrella or because it decides to diversify its product portfolio as
the cost of creating new products has decreased considerably. At this stage, we have
identified in a number of companies that broadening the scope of the software product
family without adjusting the mode of operation quite fundamentally leads to a number
of key concerns and problems that are logical and unavoidable. However, because of
the earlier success that the organization has experienced, the problems are
insufficiently identified as fundamental, but rather as execution challenges, and
fundamental changes to the mode of operation are not made until the company
experiences significant financial consequences.

www.manaraa.com

 Invited Talk: Expanding Software Product Families: From Integration to Composition 287

The problems and their underlying causes that one may observe when the scope of
a product family is broadened considerably over time include, among others, those
described below:

• Decreasing complete commonality: Before broadening the scope of the
product family, the platform formed the common core of product functionality.
However, with the increasing scope, the products are increasingly diverse in
their requirements and amount of functionality that is required for all products is
decreasing, in either absolute or relative terms. Consequently, the (relative)
number of components that is shared by all products is decreasing, reducing the
relevance of the common platform.

• Increasing partial commonality: Functionality that is shared by some or many
products, though not by all, is increasingly significantly with the increasing
scope. Consequently, the (relative) number of components that is shared by
some or most products is increasing. The typical approach to this model is the
adoption of hierarchical product families. In this case, business groups or teams
responsible for certain product categories build a platform on top of the
company wide platform. Although this alleviates part of the problem, it does not
provide an effective mechanism to share components between business groups
or teams developing products in different product categories.

• Over-engineered architecture: With the increasing scope of the product
family, the set of business and technical qualities that needs to be supported by
the common platform is broadening as well. Although no product needs support
for all qualities, the architecture of the platform is required to do so and,
consequently, needs to be over-engineered to satisfy the needs of all products
and product categories.

• Cross–cutting features: Especially in embedded systems, new features
frequently fail to respect the boundaries of the platform. Whereas the typical
approach is that differentiating features are implemented in the product
(category) specific code, often these features require changes in the common
components as well. Depending on the domain in which the organization
develops products, the notion of a platform capturing the common functionality
between all products may easily turn into an illusion as the scope of the product
family increases.

• Maturity of product categories: Different product categories developed by one
organization frequently are in different phases of the lifecycle. The challenge is
that, depending on the maturity of a product category, the requirements on the
common platform are quite different. For instance, for mature product categories
cost and reliability are typically the most important whereas for product
categories early in the maturity phase feature richness and time-to-market are
the most important drivers. A common platform has to satisfy the requirements
of all product categories, which easily leads to tensions between the platform
organization and the product categories.

• Unresponsiveness of platform: Especially for product categories early in the
maturation cycle, the slow release cycle of software platforms is particularly
frustrating. Often, a new feature is required rapidly in a new product. However,
the feature requires changes in some platform components. As the platform has

www.manaraa.com

288 J. Bosch

a slow release cycle, the platform is typically unable to respond to the request of
the product team. The product team is willing to implement this functionality
itself, but the platform team is often not allowing this because of the potential
consequences for the quality of the product team.

3 Five Dimensions of Product Families

In this section, we discuss the five dimensions that are of predominant importance in
the context of broadening the scope of software product families, i.e. business
strategy, architecture, components, product creation and evolution.

3.1 Business Strategy

Based on the author’s experience in the domain of software product families, one can
identify three predominant business strategies:

• R&D minimization: The first argument used by companies moving from product-
specific to product family development of software is the reduction of R&D
expenditure through the sharing of software artifacts between multiple products.

• Time-to-market optimization: Once the organization has successfully adopted a
product family approach, the next argument often becomes the decreased time-to-
market of new products as these products can share a significant amount of
software.

• Maximizing product family scope: Once the organization is successfully bringing
new products to market with agreeable R&D expenditure and time-to-market, there
is often a drive to broaden the scope of the product family. This may be because
the approach has proven its success in one product category and the organization is
eager to build on this success by expanding it to other product categories. A second
scenario is where the organization enjoys success in the market because of its
adopted approach and is able to expand into new product categories. This article is
concerned with the challenges and consequences of this third stage.

3.2 Architecture

In section 4.1, three, often consecutive, stages of business strategy are discussed. One
can also identify four architectural approaches that are partially related to the stages
discussed above.

• Fixed structural architecture: The first architectural approach, especially suitable
for relatively narrow product families, is to specify a complete structural
architecture as the basis for the product family. The architecture is the same for all
products and variation is primarily captured through variation points in the
components.

• Micro-kernel architecture, optional elements: An alternative, architecture
centric approach is the combination of a micro-kernel, used for all products in the
family, and significant set of optional elements that can be included, replaced or
excluded depending on the product being derived.

www.manaraa.com

 Invited Talk: Expanding Software Product Families: From Integration to Composition 289

• Architectural principles guaranteeing compositionality: The third approach
does away with the structural architecture all together and focuses on the
architectural principles that components have to satisfy in order to guarantee
composability. This approach allows for the richest set of alternative
configurations to be derived from the shared product family artefacts.

• Accidental architecture: Finally, in an excessive component-oriented approach,
the architecture is the result of the opportunistic composition of independently
developed components that share no or few architectural principles.

3.3 Components

Although architecture is very important and helps achieve business and operational
qualities of software systems, it is of course the components that contain the actual
implementations of functionality, features and requirements. Not surprising, however,
the relation between the architecture and the components is more intimate than the
terms may indicate. Again, we present three approaches to developing, managing and
evolving components.

• Internal integration-oriented components: The first category is defined by the
class of components that have been implemented specifically for a specific
architecture that is specified in all or most of its aspects. The components contain
variation points to satisfy the differences between different products in the family,
but these do not spread significantly beyond the interfaces of the components.
Finally, the components are implemented such that they depend on the
implementation of other components rather than on explicit and specified
interfaces.

• Internal compositional components: An alternative approach to implementing
components is to develop components against explicitly defined provided, required
and configuration interfaces and based on well-defined architectural principles.
This approach allows for components that represent relatively independent
domains of functionality and that can be freely composed with other components,
as long as interfaces are adhered to and principles not violated.

• External components: In the era of open-source software, organizations often are
able to satisfy a significant part of the requirements of a product through the
selection of appropriate components. The resulting collection can often be
complemented by commercially available components. This approach specifies an
extreme approach, but in practice most product families define some form of
common infrastructure consisting of external components. Thus, the latter two
approaches are often combined.

3.4 Product Creation

With all the focus on strategy, architecture and component, one would almost forget
that the predominant reason for all this work is to cost-effectively and rapidly create a
broad set of products. Again, here we can identify alternative approaches.

• Product-specific code based on pre-integrated platform: The integration-
oriented model presented in section 2 typically assumes a pre-integrated platform
that contains the generic functionality required by all or most products in the

www.manaraa.com

290 J. Bosch

family. A product is created by using the pre-integrated platform as a basis and
adding the product-specific code on top of the platform. Although not necessarily
so, often the company is also organized is along this boundary. The approach
works very well for narrowly scoped product families, but less well when the scope
of the product family is broadening.

• Composing components in product specific configurations: An alternative
approach is to rely on a composable set of components that can be relatively freely
combined by a product team to compose a significant part of the functionality
required by the product. The composition of reusable components can be interlaced
with product specific functionality at any interconnect between two components as
well as, architecturally, on top of the reusable components. This approach is based
on the assumption that through enforcing architectural principles on the
components relatively free compositionality can be achieved while maintaining
system reliability.

• Opportunistic integration and glueing of external components: Finally, the
third approach that can be pursued is the opportunistic integration and glueing of
external components to create a product. Especially companies that, at some point,
discover the open source software community and the tens of thousands of ongoing
projects experiment with constructing systems through composing open source
software components.

3.5 Evolution

The topic that, in my experience, often is the most challenging to manage well is the
evolution of shared as well as product-specific software artefacts. Although the
creation of an individual product based on reusable components brings benefit to the
company, in practice the true benefits and cost appear when the whole machinery
consisting of continuous product creation and the evolution and expansion of shared
software artefacts is operating in normal mode. This dimension is primarily an
organizational one as the evolution of features and requirements anyhow needs to take
place from a technical perspective. Below, we discuss different alternatives that we
have seen organizations use in practice:

• Platform organization: The first model, typically used in an integration-oriented
approach is the strong preference towards incorporates new features and
requirements into the pre-integrated platform. The reasoning behind this model is
that new features, in due time, need to be provided in all products anyway and
consequently, the most cost effective approach is to perform this directly. This
instead of an alternative approach where product-specific functionality evolves and
generalizes over time and is incorporated into the platform when the use of the
functionality has spread sufficiently broadly.

• New or extended components: Especially in the case of a more composition-
oriented approach, incorporation of new features/requirements occurs through the
creation of new components or the extension of already existing components,
frequently adding new variation points. Even new components, since these adhere
to the architectural principles, can be composed with older components in cases
where earlier a different component was used. The new component or the

www.manaraa.com

 Invited Talk: Expanding Software Product Families: From Integration to Composition 291

extension of an existing component can, depending on the organization, be
developed either by a component team or by the product team that requires the
functionality the first.

• Open-source community: The third model, achieving increasing respect, is the
proactive embedding of commercial R&D teams in the open-source software
community. The important position in this case is viewing the R&D team to be part
of the community, not outside it and collaborating with the community. When
successfully implemented in a suitable domain, such a collaborative approach can
lead to highly responsive and productive R&D work. Finally, it is important to
mention that open-source software communities do not consist primarily of
individuals that program for fun, but rather that several organizations may decide
together that they care to share cost and effort required for the evolution of their
collective products or systems.

4 Beyond the Integration-Oriented Approach

This paper is concerned with analyzing the challenges of broadening the scope of a
software product family and by discussing alternative approaches to address these
challenges. This section discusses two approaches. The first approach is the
hierarchical product family. In this case, the reusable software artefacts are organized
in a, typically, two-layered hierarchy. The first layer contains the generic code used
by all products and the second layer contains the software artefacts that are used by all
products in a specific category. The second approach is the composition-oriented
method where the architecture is primarily principle-oriented and the components can
be freely composed because these satisfy the principles. In the sections below, each
approach is discussed in more detail.

4.1 Hierarchical Software Product Family

One scenario in the evolution of a software product family is that the product family
naturally develops into a limited number of clusters of products. These clusters can
subsequently be used as product categories and assuming that the size of each cluster
and the amount of revenue generated are sufficient, business units can be made
responsible for each product category. In this case, the logical approach is to organize
the set of reusable components as well as the architecture of the product family in a
hierarchical fashion. Thus, the functionality and features that are shared by all
products in all product categories is developed as a platform by a shared R&D team.
This platform is used as a basis by each business unit to build a software product
family, again consisting of an extended architecture and a set of reusable components.
Using the reusable product family artefact, the business unit can rapidly and easily
develop new products and evolve new ones.

The hierarchical software product family occupies one point in the five
dimensional space described in the previous section:

• Business strategy - maximizing product family scope: Although R&D cost and
time-to-market are obviously relevant factors for any technology driven
organization, the most important rationale for the hierarchical product family is
that it facilitates the creation of a much broader set of products.

www.manaraa.com

292 J. Bosch

• Architecture - micro-kernel architecture, optional elements: The key challenge
in the case of a hierarchical family is to architect the whole system such that that
the business units can extend the platform architecture with the elements needed by
their product category.

• Components - internal integration-oriented components: Although the hierarchical
approach addresses several of the concerns discussed in section 2, it fundamentally
takes the same integration-oriented approach as the original approach. The main
difference is that the integration takes place in two stages, i.e. once for the basic
platform and once for the reusable components for each product category.

• Product creation - product-specific code based on pre-integrated platform: As
all reusable software artefacts are pre-integrated, product creation is primarily
focused on the adding of product specific code on top of the reusable artefacts.
This approach is excellent as long as the product specific requirements do not
affect the shared components, which is often the case in embedded systems.

• Evolution - platform organization: Although business units add product specific
code on top of the shared components, it is the responsibility of the platform
organization to bring new functionality and features to the business units. This
evolution typically follows the vertical path, i.e. over time product-specific code
matures and becomes part of the business unit specific shared artefacts.
Subsequently, the functionality becomes part of the base platform and only then it
becomes available to other business units. This means that there is no effective
mechanism to share specific functionality between two business units.

4.2 Composition-Oriented Method

The second approach that we discuss in this paper is the composition-oriented
method. The composition-oriented approach can be viewed as being positioned close
to the one end of a continuum whereas the integration-oriented approach is close to
the other end. The predominant factor defining the continuum is the balance between
the organization developing the reusable software and the teams creating products
using, among others, the reusable software. Depending on the organizational approach
chosen, component teams may not even exist, as in the case of HP Owen [Toft et al.
00], and even if these exist, they are not necessarily part of a software reuse R&D
team. The key challenge in this model is the architecture of the product family. As the
architecture is based on principles, rather than a structural architecture, maintaining a
consistent and productive architecture-centric environment is more difficult than in
other approaches.

The composition-oriented approach can be pinpointed in one location in the five
dimensional space presented earlier:

• Business strategy - maximizing product family scope: Although R&D cost and
time-to-market are obviously relevant factors for any technology driven
organization, the most important rationale for the composition-oriented approach is
that it facilitates the creation of a much broader set of products.

• Architecture - architectural principles guaranteeing compositionality: As
discussed earlier, the key difference between this approach and other approaches is

www.manaraa.com

 Invited Talk: Expanding Software Product Families: From Integration to Composition 293

that the architecture is not described in terms of components and connectors, but
rather in terms of the architectural principles, design rules and design constraints.

• Components - internal compositional components: Obviously, the composition-
oriented approach is very much driven by components. However, these components
are not developed ad-hoc, but are constrained in their implementation by the
architecture. As each component satisfies the architectural principles compositionality
of these components is guaranteed.

• Product creation - composing components in product specific configurations:
The explicit goal of this approach is to facilitate the derivation of a broad range of
products that may need to compose components in an equally wide range of
configurations. Product creation is, consequently, the selection of the most suitable
components, the configuration of these components according to the product
requirements, the development of glue code in places where the interaction between
components needs to be adjusted for the product specific requirements and the
development of product-specific code on top of the reusable components.

• Evolution - new or extended components: Product teams as well as component
teams can be responsible for the evolution of the code base. Product teams
typically extend existing components with functionality that they need for their
product but is judged to be useful for future products as well. Product teams may
also create new components for the same purpose. Component teams, if used, are
more concerned with adding features that are required by multiple products. A
typical example is the implementation of a new version of a communication
protocol.

4.3 Analysis and Comparison

When analyzing the three approaches discussed in this paper, it is important to note
that we have purposely excluded an open-source software based approach. The reason
for this is that open-source software components can be included in each of the
discussed approaches and as such are orthogonal to the approach chosen. However,
the use of open-source software (OSS) has an impact on the software development
organization as the evolution of OSS components can not be controlled to the same
extent as internal components and most OSS licenses demand that the organization
offers its addition to the OSS community. Nevertheless, despite these challenges, the
use of OSS allows for very rapid creation of extensive software systems and can be a
major factor in the reduction of R&D effort.

In the table below, we summarize the three approaches discussed in the paper.
Each approach has a specific area of applicability. As discussed earlier in the paper
for the case of the integration-oriented approach, applying an approach outside its
area of applicability typically leads to several problems. As it for most
organizations is difficult to replace an approach to software reuse that has been very
successful in the past but has lost its applicability, this paper aims to discuss
alternative approaches so organizations can, in a more explicit and objective
manner, select the best approach. The table below summarizes the three approaches
discussed in this paper.

www.manaraa.com

294 J. Bosch

Table 1. Comparison of the alternative approaches

Factors Integration-oriented Hierarchical Composition-oriented
When applicable? Well scoped family of

highly related products
Broad family with a
number of focused
product categories

Broad family of products
with significant unique
requirements and
features

Strategy R&D cost minimization
and/or time-to-market

maximizing product
family scope

maximizing product
family scope

Architecture Fixed structural
architecture

Micro-kernel
architecture, optional
elements

Architectural principles
guaranteeing
compositionality

Components Internal integration-
oriented components

Internal integration-
oriented components

Internal compositional
components

Product creation Product-specific code
based on pre-integrated
platform

Product-specific code
based on pre-integrated
platform

Composing components
in product specific
configurations

Evolution Platform organization Platform organization new or extended
components

When used outside
area of applicability

Unresponsiveness of
platform leading to
long lead times

Complicated alignment
between hierachical
platform organizations
leading to long lead
times

High R&D cost due to
significant overlap of
development and
integration efforts

5 Related Work

This paper discusses two approaches that can be considered as alternatives to the
integration-oriented approach that traditionally has been used frequently in the
embedded systems industry. These alternative approaches are important because
successful product families may broaden their scope considerably due to their success
and this requires a conscious adjustment of the overall approach to software reuse.
Although we believe that discussing these approaches in this context is a contribution
of this paper, the approaches themselves have been discussed by other authors.

The paper by [Toft et al. 00] discusses the approach taken by Hewlett Packard’s
printer division where extensive sharing of software for the firmware of their products
was achieved without the creation of a central domain engineering unit. A second
author that has been promoting the notion of product populations and the
consequences for the way software development is performed is Rob van Ommering
[Ommering 02]. These concepts were further explored in a later publication jointly
with the author of this paper [Ommering & Bosch 02].

6 Conclusions

Software product families have found broad adoption in the embedded systems
industry, as well as in other domains. Due to their success, product families at several
companies experience a significant broadening of the scope of the family. This may
be due to the fact that the cost of product creation has decreased significantly or
because of management decisions that bring previously unrelated products under the
umbrella of the product family. However, a broadly scoped product family requires a

www.manaraa.com

 Invited Talk: Expanding Software Product Families: From Integration to Composition 295

different approach than the traditional integration-oriented approach proliferated in
many embedded systems companies. If the organization fails to adjust its approach,
one can identify several problems that may result from this, including
unresponsiveness of the platform, difficulties related to dealing with cross-cutting
features and architectural challenges due to the need for over-engineering.

To address these concerns, we presented the five main aspects of product families
that are relevant in this context, i.e. business strategy, architecture, components,
product creation and evolution. Based on these dimensions, we have presented two
alternative approaches. The first is the notion of hierarchical product families where
the shared software artefacts are organized in, typically, two layers. The first layer
captures the functionality that is common to all products in the product family
whereas the artefacts at the second layer are specific to a product category. Secondly,
we presented the composition-oriented approach that is different in that it is based on
a set of architectural principles, design rules and design constraints rather than an
architectural structure consisting of components and connectors. The components in
this approach are relatively freely composable as these satisfy the same set of
architectural principles. Finally, we analysed and summarized the three approaches
discussed in the paper. The contribution of this paper is that it analyses the problems
of and presents alternative approaches that are better suited for broad-scoped product
families.

In future work, we intend to study the identified problems in more detail as well as
evaluate the proposed alternative approaches more carefully as could be achieved in
this paper. In addition, potentially further alternatives can be developed, especially
approaches that cross organizational boundaries and/or involve the open-source
software community.

References

[Bosch 00] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a
Product Line Approach, Pearson Education (Addison-Wesley & ACM Press), ISBN 0-201-
67494-7, May 2000.

[Ommering & Bosch 02] R. van Ommering, J. Bosch, Widening the Scope of Software Product
Lines - From Variation to Composition, Proceedings of the Second Software Product Line
Conference (SPLC2), pp. 328-347, August 2002.

[Ommering 02] R. van Ommering, Building product populations with software components,
Proceedings of the 24th International Conference on Software Engineering, pp. 255 – 265,
2002.

[O’Reilly 05] http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
[Toft et al. 00] Peter Toft, Derek Coleman, and Joni Ohta, HP Product Generation Consulting,

A Cooperative Model for Cross-Divisional Product Development for a Software Product
Line, Proceedings of the First Software Product Lines Converence (SPLC1), Kluwer
Academic Publishers, August 2000 (Ed. Patrick Donohoe), pages 111-132.

www.manaraa.com

Author Index

Bagherzadeh, Nader 1
Beigl, Michael 142
Bosch, Jan 283
Branke, Jürgen 209
Buchtala, Oliver 126

Catthoor, Francky 57
Chand, Raphaël 98
Chung, Kyusik 224
Cosnard, Michel 98
Cui, Huimin 43

de Miguel Casado, Gregorio 240
Decker, Christian 142
Duan, Zhenzhong 43

Fan, Dongrui 43

Garćıa Chamizo, Juan Manuel 240

Hampel, Volker 14
Hannig, Frank 268
Hong, Won-Kee 112
Huang, He 43

Jayapala, Murali 57

Kaufmann, Paul 199
Kim, Hie-Cheol 112
Kim, Tae-Hwan 112
Kissler, Dmitrij 268
Krohn, Albert 142
Kupriyanov, Alexey 268
Kwak, Hukeun 224

Lallet, Julien 268
Lambrechts, Andy 57
Lefevre, Laurent 157
Li, Peng 28
Liß, Christian 83
Liquori, Luigi 98
Lu, Meijuan 28

Magaña, Edgar 157
Mart́ın-Langerwerf, Javier 254
Mnif, Moez 209
Mora Mora, Higinio 240
Müller-Schloer, Christian 209
Munaga, Satyakiran 57

Niemann, Jörg-Christian 83
Niktash, Afshin 1

Parizi, Hooman T. 1
Payá-Vayá, Guillermo 254
Pietzowski, Andreas 171
Pillement, Sébastien 268
Pirsch, Peter 254
Platzner, Marco 199
Porrmann, Mario 83

Qian, Xuehai 43

Raghavan, Praveen 57
Ramaswamy, Subramanian 69
Ramos, Estela Rey 57
Richter, Urban 209
Riedel, Till 142
Rückert, Ulrich 83

Satoh, Ichiro 185
Satzger, Benjamin 171
Schmeck, Hartmut 209
Scholl, Phillip 142
Sentieys, Olivier 268
Serrat, Joan 157
Sick, Bernhard 126
Signes Pont, Maŕıa Teresa 240
Sobe, Peter 14
Sohn, Andrew 224

Taptimthong, Piriya 254
Teich, Jürgen 268
Trumler, Wolfgang 171

Ungerer, Theo 171

Verkest, Diederik 57

Wang, Dongsheng 28
Wang, Haixia 28

Yalamanchili, Sudhakar 69
Yuan, Nan 43

Zhang, Hao 43
Zhang, Junchao 43
Zheng, Weimin 28
Zhou, Yongbin 43

	Title page
	Preface
	Organization
	Table of Contents
	A Reconfigurable Processor for Forward ErrorCorrection
	Introduction
	Related Works
	RECFEC Architecture
	Processing Elements Pool
	Data Buffer
	Configuration Buffer
	PE Controller
	DMA Controller
	Interconnection Network
	Programming Model of RECFEC

	Implementation of FEC Algorithms
	The Viterbi Algorithm
	Turbo Algorithm

	Conclusion
	References

	FPGA-Accelerated Deletion-Tolerant Coding forReliable Distributed Storage
	Introduction
	Distributed Reliable Storage
	Overview
	Reed/Solomon Coding
	Preliminary Analysis

	FPGA-Accelerated Reed/Solomon Coding
	Cray XD1 Environment
	Galois Field Multiplier
	GF Multiplier Array
	GF Multiplier Array with Implicit Factors (GFMA-IF)
	R/S Coprocessor
	Comparison

	Performance Evaluation
	Evaluation Method
	Computation Bandwidth
	Insights

	Related Work
	Conclusion

	LIRAC: Using Live Range Information toOptimize Memory Access
	Introduction
	Related Work
	Live Range Aware Cache Architecture
	Write in Processor and Memory Domain
	Live Range and Dead Range
	Architecture of LIRAC
	Multi-level LIRAC
	Debugging Support for LIRAC Architecture

	Software Support For LIRAC
	Compiler Analysis
	Binary Transformation
	Memory Tracing
	Two Types of LastReads

	Methodology
	Results
	Live Range Aware Buffer
	Conclusions and Future Work

	Optimized Register Renaming Scheme for Stack-Basedx86 Operations
	Introduction
	Overview of the GodsonX Architecture
	Motivating Example
	Optimized 2-Phase Register Renaming Scheme
	Mapping from Stack Registers to Logical Registers
	Optimized Register Mapping in the RISC Core

	Applications of the Renaming Scheme
	Experimental Infrastructure
	Simulation Results and Discussion
	Performance and Characteristics of x86 Programs
	Effects of the Optimized Scheme
	Hardware Costs Comparison

	Related Work
	Conclusion
	References

	A Customized Cross-Bar for Data-Shuffling inDomain-Specific SIMD Processors
	Introduction
	Related Work
	Shuffle Families
	Families of Shuffle Operations

	Crossbar Customization
	Results
	Experimental Setup
	Results and Analysis

	Conclusions

	Customized Placement for High PerformanceEmbedded Processor Caches
	Introduction
	Caches with Customized Placement
	Program Phases and Interference Potential
	Architecture and Programming Model

	Customized Placement
	Placement Algorithm
	Address Translation

	Performance Evaluation
	Related Work
	Conclusion and Future Work

	A Multiprocessor Cache for Massively Parallel SoCArchitectures
	Introduction
	GigaNetIC Multiprocessor Architecture
	Chip-Multiprocessor Caches
	GigaNetIC Multiprocessor Cache Architecture
	Reuse and Application-Specific Optimizations
	Snooping

	Analysis Results
	Simulation Models and the RAPTOR2000 Rapid Prototyping System
	Performance Analysis
	Synthesis Results

	Conclusion
	References

	Improving Resource Discovery in theArigatoni Overlay Network
	Introduction
	\RDP\ Pseudo-code
	Resource Discovery Protocol \RDP\ \Vtwo
	Protocol Evaluation
	Related Work and Conclusions
	The $F\!ilter$ and $Route$ Algorithms

	An Effective Multi-hop Broadcast in VehicularAd-Hoc Network
	Introduction
	Related Work
	Time Reservation-Based Relay Node Selecting Algorithm
	Conclusion
	Performance Evaluation

	Functional Knowledge ExchangeWithin an Intelligent Distributed System
	Introduction
	Architecture for Functional Knowledge Exchange
	Research Issues and Related Work
	Architecture Overview
	Components of the Organic Node

	Experimental Results
	Artificial Scenario
	Intrusion Detection -- Combination of Misuse and Anomaly Identification

	Conclusion

	Architecture for Collaborative Business Items
	Introduction
	Analysis
	Collaborative Business Items
	Logic on the Item
	Architectures for Collaborative Business Items

	Key Design Challenges
	Interfaces
	Addressing
	Discovery
	Lifecycle Management

	CoBIs Gateway Architecture
	Gateway Devices
	Interface Transformations
	Message Primitives

	Real World Trial
	Trial Evaluation

	Conclusion
	References

	Autonomic Management Architecture for Flexible GridServices Deployment Based on Policies
	Introduction
	Related Work
	Policy-Based Management Architecture
	Components of the Network Management System
	Architectural Flexibility and Extensibility

	Management Policies Structure
	Management and Deployment of Grid Services
	Service Level Agreement (SLA)
	Grid Service Requirements – Network Level Policy Creation
	Network Level Policy Analysis Sequence
	Selection of Grid Target Nodes
	Grid Nodes Configuration – Element Level Policy Creation
	Grid Service Resources Activation

	Early Experiments
	Conclusions and Future Work
	References

	Variations and Evaluations of an AdaptiveAccrual Failure Detector to Enable Self-healingProperties in Distributed Systems
	Introduction
	State of the Art and Related Work
	Basic Failure Detection Algorithm
	Variations of the Basic Algorithm
	A Different Freshness Point Strategy
	Histogram Smoothing

	Evaluation
	Experiment Setup
	Results

	Conclusions and Future Work

	Self-organizing Software Componentsin Distributed Systems
	Introduction
	Basic Approach
	Design and Implementation
	Component Runtime System
	Component Programming Model
	Component Deployment Policy
	Component Deployment Management
	Intercomponent Communication
	Security
	Current Status

	Experience
	Dynamic Deployment for Duplicated Servers
	Ant-Based Routing Mechanisms
	Component Diffusion in Sensor Networks

	Related Work
	Conclusion

	Toward Self-adaptive Embedded Systems:Multi-objective Hardware Evolution
	Introduction
	Architecture Concept
	Autonomous Subsystem and Fitness Evaluation
	Multi-objective Hardware Evolution

	Evolutionary Hardware Design
	Experiments and Results
	6-Parity
	Hashing Function

	Summary and Further Work

	Measurement and Control of Self-organisedBehaviour in Robot Swarms
	Introduction
	Observer/Controller Architecture
	Quantitative Emergence
	Experimental Results
	Experimental Environment
	Observer/Controller Architecture Applied to Scenario
	Observation of Emergence
	Emergence with Noise Intervention

	Conclusion and Outlook

	Autonomous Learning of Load and Traffic Patterns toImprove Cluster Utilization
	Introduction
	Adaptive Clustering with LBLCR Scheduling
	Autonomous Learning
	Learning Environment Overview
	Normalizing Load and Traffic Patterns
	Identifying Load and Traffic Patterns
	Expanding/Contracting Server Set Boundary
	Learning New Patterns

	Experimental Results
	Experiment Environment
	Learning Behavior
	Learning New Patterns
	Learning Frequency

	Performance Comparisons
	Overall Comparison
	Scalability

	Conclusions
	References

	Parametric Architecture for FunctionCalculation Improvement
	Introduction
	Definition of a Weighted Primitive
	Function Evaluation Method Based on a Weighted Primitive
	Architecture
	Calculation of the Hough Transform
	Comparison with Pipelined CORDIC
	Comparison with a Parallel CORDIC
	Comparison with a Software Implementation

	Conclusion

	Design Space Exploration of Media Processors:A Generic VLIW Architecture and aParameterized Scheduler
	Introduction
	A Generic VLIW Architecture
	Vector Unit Structure
	Specialized Instructions and Functional Units
	Multiple Vector Unit and Partitioned Register File

	Parameterized Scheduler
	Scheduler Structure
	Enhanced List Scheduling Algorithm

	Design Space Exploration Example
	H.264 Motion Compensated Prediction
	Performance Measures

	Conclusions

	Modeling of Interconnection Networks in MassivelyParallel Processor Architectures
	Introduction
	Modeling of Interconnection Networks
	Modeling of Interconnection Network Using Interconnect-Wrappers
	Modeling of Interconnection Network Using DyRIBoxes
	Comparison of Interconnect-Wrapper and DyRIBox Concepts

	Modeling of Interconnect Structures Within MAML
	Case-Study
	Conclusions and Future Work

	Invited Talk: Expanding Software Product Families:From Integration to Composition
	Introduction
	Problem Statement
	Five Dimensions of Product Families
	Business Strategy
	Architecture
	Components
	Product Creation
	Evolution

	Beyond the Integration-Oriented Approach
	Hierarchical Software Product Family
	Composition-Oriented Method
	Analysis and Comparison

	Related Work
	Conclusions
	References

	Author Index

